Using the virtual reality device Oculus Rift for neuropsychological assessment of visual processing capabilities

Foerster RM, Poth CH, Behler C, Botsch M, Schneider WX (2016)
Scientific Reports 6(1): 37016.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.04 MB
Abstract / Bemerkung
Neuropsychological assessment of human visual processing capabilities strongly depends on visual testing conditions including room lighting, stimuli, and viewing-distance. This limits standardization, threatens reliability, and prevents the assessment of core visual functions such as visual processing speed. Increasingly available virtual reality devices allow to address these problems. One such device is the portable, light-weight, and easy-to-use Oculus Rift. It is head-mounted and covers the entire visual field, thereby shielding and standardizing the visual stimulation. A fundamental prerequisite to use Oculus Rift for neuropsychological assessment is sufficient test-retest reliability. Here, we compare the test-retest reliabilities of Bundesen’s visual processing components (visual processing speed, threshold of conscious perception, capacity of visual working memory) as measured with Oculus Rift and a standard CRT computer screen. Our results show that Oculus Rift allows to measure the processing components as reliably as the standard CRT. This means that Oculus Rift is applicable for standardized and reliable assessment and diagnosis of elementary cognitive functions in laboratory and clinical settings. Oculus Rift thus provides the opportunity to compare visual processing components between individuals and institutions and to establish statistical norm distributions.
Erscheinungsjahr
2016
Zeitschriftentitel
Scientific Reports
Band
6
Ausgabe
1
Art.-Nr.
37016
eISSN
2045-2322
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2906894

Zitieren

Foerster RM, Poth CH, Behler C, Botsch M, Schneider WX. Using the virtual reality device Oculus Rift for neuropsychological assessment of visual processing capabilities. Scientific Reports. 2016;6(1): 37016.
Foerster, R. M., Poth, C. H., Behler, C., Botsch, M., & Schneider, W. X. (2016). Using the virtual reality device Oculus Rift for neuropsychological assessment of visual processing capabilities. Scientific Reports, 6(1), 37016. https://doi.org/10.1038/srep37016
Foerster, Rebecca M., Poth, Christian H., Behler, Christian, Botsch, Mario, and Schneider, Werner X. 2016. “Using the virtual reality device Oculus Rift for neuropsychological assessment of visual processing capabilities”. Scientific Reports 6 (1): 37016.
Foerster, R. M., Poth, C. H., Behler, C., Botsch, M., and Schneider, W. X. (2016). Using the virtual reality device Oculus Rift for neuropsychological assessment of visual processing capabilities. Scientific Reports 6:37016.
Foerster, R.M., et al., 2016. Using the virtual reality device Oculus Rift for neuropsychological assessment of visual processing capabilities. Scientific Reports, 6(1): 37016.
R.M. Foerster, et al., “Using the virtual reality device Oculus Rift for neuropsychological assessment of visual processing capabilities”, Scientific Reports, vol. 6, 2016, : 37016.
Foerster, R.M., Poth, C.H., Behler, C., Botsch, M., Schneider, W.X.: Using the virtual reality device Oculus Rift for neuropsychological assessment of visual processing capabilities. Scientific Reports. 6, : 37016 (2016).
Foerster, Rebecca M., Poth, Christian H., Behler, Christian, Botsch, Mario, and Schneider, Werner X. “Using the virtual reality device Oculus Rift for neuropsychological assessment of visual processing capabilities”. Scientific Reports 6.1 (2016): 37016.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-25T06:41:01Z
MD5 Prüfsumme
85c60f1ce2d24212a6878c0682a48f6b


Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Acceptance of immersive head-mounted virtual reality in older adults.
Huygelier H, Schraepen B, van Ee R, Vanden Abeele V, Gillebert CR., Sci Rep 9(1), 2019
PMID: 30872760
Objective Assessment of Activity Limitation in Glaucoma with Smartphone Virtual Reality Goggles: A Pilot Study.
Goh RLZ, Kong YXG, McAlinden C, Liu J, Crowston JG, Skalicky SE., Transl Vis Sci Technol 7(1), 2018
PMID: 29372112
Ultrahigh temporal resolution of visual presentation using gaming monitors and G-Sync.
Poth CH, Foerster RM, Behler C, Schwanecke U, Schneider WX, Botsch M., Behav Res Methods 50(1), 2018
PMID: 29340970
A review of rapid serial visual presentation-based brain-computer interfaces.
Lees S, Dayan N, Cecotti H, McCullagh P, Maguire L, Lotte F, Coyle D., J Neural Eng 15(2), 2018
PMID: 29099388
Ocular Tolerance of Contemporary Electronic Display Devices.
Clark AJ, Yang P, Khaderi KR, Moshfeghi AA., Ophthalmic Surg Lasers Imaging Retina 49(5), 2018
PMID: 29772045
Measuring visual search and distraction in immersive virtual reality.
Olk B, Dinu A, Zielinski DJ, Kopper R., R Soc Open Sci 5(5), 2018
PMID: 29892418
Social Event Memory Test (SEMT): A Video-based Memory Test for Predicting Amyloid Positivity for Alzheimer's Disease.
Kim KW, Choi JD, Lee H, Lee NK, Park S, Chin J, Lee BH, Shin J, Kim Y, Jang H, Choi JH, Na DL., Sci Rep 8(1), 2018
PMID: 29991732
I spy with my little eye: a simple behavioral assay to test color sensitivity on digital displays.
Knorr AG, Gravot CM, Gordy C, Glasauer S, Straka H., Biol Open 7(10), 2018
PMID: 30127095
Emerging Utility of Virtual Reality as a Multidisciplinary Tool in Clinical Medicine.
Pourmand A, Davis S, Lee D, Barber S, Sikka N., Games Health J 6(5), 2017
PMID: 28759254

46 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 1987

AUTHOR UNKNOWN, 1983

AUTHOR UNKNOWN, 2009
A theory of visual attention.
Bundesen C., Psychol Rev 97(4), 1990
PMID: 2247540
Quality-space theory in olfaction.
Young BD, Keller A, Rosenthal D., Front Psychol 5(), 2014
PMID: 24474945
How parallel is visual processing in the ventral pathway?
Rousselet GA, Thorpe SJ, Fabre-Thorpe M., Trends Cogn. Sci. (Regul. Ed.) 8(8), 2004
PMID: 15335463
Selective visual processing across competition episodes: A theory of task-driven visual attention and working memory
AUTHOR UNKNOWN, 2013
Systematic analysis of deficits in visual attention.
Duncan J, Bundesen C, Olson A, Humphreys G, Chavda S, Shibuya H., J Exp Psychol Gen 128(4), 1999
PMID: 10650583
Two routes to actorhood: lexicalized potency to act and identification of the actor role.
Frenzel S, Schlesewsky M, Bornkessel-Schlesewsky I., Front Psychol 6(), 2015
PMID: 25688217
A biased competition account of attention and memory in Alzheimer’s disease
AUTHOR UNKNOWN, 2013
Age changes in processing speed as a leading indicator of cognitive aging.
Finkel D, Reynolds CA, McArdle JJ, Pedersen NL., Psychol Aging 22(3), 2007
PMID: 17874954
Visual attention capacity parameters covary with hemifield alignment.
Kraft A, Dyrholm M, Bundesen C, Kyllingsbæk S, Kathmann N, Brandt SA., Neuropsychologia 51(5), 2013
PMID: 23391558
Testing attention: comparing the ANT with TVA-based assessment.
Habekost T, Petersen A, Vangkilde S., Behav Res Methods 46(1), 2014
PMID: 23592299
Testing the efficiency and independence of attentional networks.
Fan J, McCandliss BD, Sommer T, Raz A, Posner MI., J Cogn Neurosci 14(3), 2002
PMID: 11970796
Übungseffekte in den TAP Untertests Test Go/Nogo und Geteilte Aufmerksamkeit sowie dem Aufmerksamkeits-Belastungstest (d2)
AUTHOR UNKNOWN, 2006

AUTHOR UNKNOWN, 2002

AUTHOR UNKNOWN, 1995
Usability of a theory of visual attention (TVA) for parameter-based measurement of attention I: evidence from normal subjects.
Finke K, Bublak P, Krummenacher J, Kyllingsbaek S, Muller HJ, Schneider WX., J Int Neuropsychol Soc 11(7), 2005
PMID: 16519262

AUTHOR UNKNOWN, 2008
Top-down modulation: bridging selective attention and working memory.
Gazzaley A, Nobre AC., Trends Cogn. Sci. (Regul. Ed.) 16(2), 2011
PMID: 22209601
The cognitive neuroscience of working memory.
D'Esposito M, Postle BR., Annu Rev Psychol 66(), 2014
PMID: 25251486
Episodic short-term recognition requires visual working memory: Evidence from probe recognition after letter report
AUTHOR UNKNOWN, 2016
Quality-space theory in olfaction.
Young BD, Keller A, Rosenthal D., Front Psychol 5(), 2014
PMID: 24474945

AUTHOR UNKNOWN, 2014
A timely reminder about stimulus display times and other presentation parameters on CRTs and newer technologies
AUTHOR UNKNOWN, 2015
Two routes to actorhood: lexicalized potency to act and identification of the actor role.
Frenzel S, Schlesewsky M, Bornkessel-Schlesewsky I., Front Psychol 6(), 2015
PMID: 25688217

AUTHOR UNKNOWN, 2014
Tests for comparing elements of a correlation matrix
AUTHOR UNKNOWN, 1980
Parameter-based assessment of spatial and non-spatial attentional deficits in Huntington's disease.
Finke K, Bublak P, Dose M, Muller HJ, Schneider WX., Brain 129(Pt 5), 2006
PMID: 16504973
The Use of Virtual Reality in Psychology: A Case Study in Visual Perception
AUTHOR UNKNOWN, 2015
Uses of virtual reality for diagnosis, rehabilitation and study of unilateral spatial neglect: Review and analysis
AUTHOR UNKNOWN, 2009
Virtual reality and neuropsychology: upgrading the current tools.
Schultheis MT, Himelstein J, Rizzo AA., J Head Trauma Rehabil 17(5), 2002
PMID: 12802250
Analysis of assets for virtual reality applications in neuropsychology
AUTHOR UNKNOWN, 2004
The Virtual Classroom: A Virtual Reality Environment for the Assessment and Rehabilitation of Attention Deficits
AUTHOR UNKNOWN, 2000
Shining light on motivation, emotion, and memory processes.
Ilango A, Lobo MK., Front Behav Neurosci 9(), 2015
PMID: 25653603
Virtual reality in neuroscience research and therapy.
Bohil CJ, Alicea B, Biocca FA., Nat. Rev. Neurosci. 12(12), 2011
PMID: 22048061
Learning real-life cognitive abilities in a novel 360°-virtual reality supermarket: A neuropsychological study of healthy participants and patients with epilepsy
AUTHOR UNKNOWN, 2013
Future Directions: How Virtual Reality Can Further Improve the Assessment and Treatment of Eating Disorders and Obesity
AUTHOR UNKNOWN, 2015
Prompt but inefficient: nicotine differentially modulates discrete components of attention.
Vangkilde S, Bundesen C, Coull JT., Psychopharmacology (Berl.) 218(4), 2011
PMID: 21629997
Generalizing parametric models by introducing trial-by-trial parameter variability: The case of TVA
AUTHOR UNKNOWN, 2011
Modeling visual attention.
Kyllingsbaek S., Behav Res Methods 38(1), 2006
PMID: 16817521

AUTHOR UNKNOWN, 1986
Material in PUB:
In sonstiger Relation
Virtual reality test of visual performance: Processing speed and working memory
Behler C, Poth CH, Foerster RM, Schneider WX, Botsch M (2016)
Bielefeld University.
Spätere Version
Virtual reality test of visual performance: Selective attention, processing speed, and working memory
Behler C, Poth CH, Foerster RM, Schneider WX, Botsch M (2018)
Bielefeld University.
Spätere Version
Neuropsychological assessment of visual selective attention and processing capacity with head-mounted displays.
Foerster RM, Poth CH, Behler C, Botsch M, Schneider WX (2019)
Neuropsychology 33(3): 309-318.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27869220
PubMed | Europe PMC

Suchen in

Google Scholar