Comparative proteome analysis of Actinoplanes sp SE50/110 grown with maltose or glucose shows Minor differences for acarbose biosynthesis proteins but major differences for saccharide transporters

Wendler S, Otto A, Ortseifen V, Bonn F, Neshat A, Schneiker-Bekel S, Wolf T, Zemke T, Wehmeier UF, Hecker M, Kalinowski J, et al. (2016)
Journal of Proteomics 131: 140-148.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ; ; ;
Alle
Abstract / Bemerkung
Actinoplanes sp. SE50/110 is known for the production of the la.-glucosidase inhibitor and anti-diabetic drug acarbose. Acarbose (acarviosyl-maltose) is produced as the major product when the bacterium is grown in medium with maltose, while acarviosyl-glucose is the major product when glucose is the sole carbon source in the medium. In this study, a state-of-the-art proteomics approach was applied combining subcellular fractionation, in vivo metabolic labeling and shotgun mass spectrometry to analyze differences in the proteome of Actinoplanes sp. SE50/110 cultures grown in minimal medium containing either maltose or glucose as the sole carbon source. To study proteins in distinct subcellular locations, a cytosolic, an enriched membrane, a membrane shaving and an extracellular fraction were included in the analysis. Altogether, quantitative proteome data was obtained for 2497 proteins representing about 30% of the ca. 8270 predicted proteins of Actinoplanes sp. SE50/110. When comparing protein quantities of maltose- to glucose-grown cultures, differences were observed for saccharide transport and metabolism proteins, whereas differences for acarbose biosynthesis gene cluster proteins were almost absent The maltose-inducible alpha-glucosidase/maltase Mall. as well as the ABC-type saccharide transporters AglEFG, MalEFG and MstEAF had significantly higher quantities in the maltose growth condition. The only highly abundant saccharide transporter in the glucose condition was the monosaccharide transporter MstEAF, which may indicate that MstEAF is the major glucose importer. Taken all findings together, the previously observed formation of acarviosyl-maltose and acarviosyl-glucose is more closely connected to the transport of saccharides than to a differential expression of the acarbose gene cluster. Biological significance: Diabetes is a global pandemic accounting for about 11% of the worldwide healthcare expenditures (>600 billion US dollars) and is projected to affect 592 million people by 2035 (www.idf.org). Whether Actinoplanes sp. SE50/110 produces type 2 diabetes drug acarbose (acarviosyl-maltose) or another acarviose metabolite such as acarviosyl-glucose as the major product depends on the offered carbon source. The differences observed in this proteome in this study suggest that the differences in the formation of acarviosyl-maltose and acarviosyl-glucose are more closely connected to the transport of saccharides than to a differential expression of the acarbose gene cluster. In addition, the present study provides a comprehensive overview of the proteome of Actinoplanes sp. SE50/110. (C) 2015 Elsevier B.V. All rights reserved.
Stichworte
Erscheinungsjahr
Zeitschriftentitel
Journal of Proteomics
Band
131
Seite(n)
140-148
ISSN
eISSN
PUB-ID

Zitieren

Wendler S, Otto A, Ortseifen V, et al. Comparative proteome analysis of Actinoplanes sp SE50/110 grown with maltose or glucose shows Minor differences for acarbose biosynthesis proteins but major differences for saccharide transporters. Journal of Proteomics. 2016;131:140-148.
Wendler, S., Otto, A., Ortseifen, V., Bonn, F., Neshat, A., Schneiker-Bekel, S., Wolf, T., et al. (2016). Comparative proteome analysis of Actinoplanes sp SE50/110 grown with maltose or glucose shows Minor differences for acarbose biosynthesis proteins but major differences for saccharide transporters. Journal of Proteomics, 131, 140-148. doi:10.1016/j.jprot.2015.10.023
Wendler, S., Otto, A., Ortseifen, V., Bonn, F., Neshat, A., Schneiker-Bekel, S., Wolf, T., Zemke, T., Wehmeier, U. F., Hecker, M., et al. (2016). Comparative proteome analysis of Actinoplanes sp SE50/110 grown with maltose or glucose shows Minor differences for acarbose biosynthesis proteins but major differences for saccharide transporters. Journal of Proteomics 131, 140-148.
Wendler, S., et al., 2016. Comparative proteome analysis of Actinoplanes sp SE50/110 grown with maltose or glucose shows Minor differences for acarbose biosynthesis proteins but major differences for saccharide transporters. Journal of Proteomics, 131, p 140-148.
S. Wendler, et al., “Comparative proteome analysis of Actinoplanes sp SE50/110 grown with maltose or glucose shows Minor differences for acarbose biosynthesis proteins but major differences for saccharide transporters”, Journal of Proteomics, vol. 131, 2016, pp. 140-148.
Wendler, S., Otto, A., Ortseifen, V., Bonn, F., Neshat, A., Schneiker-Bekel, S., Wolf, T., Zemke, T., Wehmeier, U.F., Hecker, M., Kalinowski, J., Becher, D., Pühler, A.: Comparative proteome analysis of Actinoplanes sp SE50/110 grown with maltose or glucose shows Minor differences for acarbose biosynthesis proteins but major differences for saccharide transporters. Journal of Proteomics. 131, 140-148 (2016).
Wendler, Sergej, Otto, Andreas, Ortseifen, Vera, Bonn, Florian, Neshat, Armin, Schneiker-Bekel, Susanne, Wolf, Timo, Zemke, Till, Wehmeier, Udo F., Hecker, Michael, Kalinowski, Jörn, Becher, Doerte, and Pühler, Alfred. “Comparative proteome analysis of Actinoplanes sp SE50/110 grown with maltose or glucose shows Minor differences for acarbose biosynthesis proteins but major differences for saccharide transporters”. Journal of Proteomics 131 (2016): 140-148.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Genome improvement of the acarbose producer Actinoplanes sp. SE50/110 and annotation refinement based on RNA-seq analysis.
Wolf T, Schneiker-Bekel S, Neshat A, Ortseifen V, Wibberg D, Zemke T, Pühler A, Kalinowski J., J Biotechnol 251(), 2017
PMID: 28427920
The MalR type regulator AcrC is a transcriptional repressor of acarbose biosynthetic genes in Actinoplanes sp. SE50/110.
Wolf T, Droste J, Gren T, Ortseifen V, Schneiker-Bekel S, Zemke T, Pühler A, Kalinowski J., BMC Genomics 18(1), 2017
PMID: 28743243

51 References

Daten bereitgestellt von Europe PubMed Central.

Chemistry and biochemistry of microbial α-glucosidase inhibitors
Truscheit, Angew. Chem. Int. Ed. Engl. 20(), 1981
Biotechnology and molecular biology of the alpha-glucosidase inhibitor acarbose.
Wehmeier UF, Piepersberg W., Appl. Microbiol. Biotechnol. 63(6), 2003
PMID: 14669056
Acarbose - ein neues Wirkprinzip in der Diabetestherapie
Bischoff, Nachr. Chem. Tech. Lab. 42(), 1994
Studies designed to localize the essential structural unit of glycoside-hydrolase inhibitors of the acarbose type
Heiker, 1981
Carbon source dependent biosynthesis of acarviose metabolites in Actinoplanes sp. SE50/110.
Wendler S, Ortseifen V, Persicke M, Klein A, Neshat A, Niehaus K, Schneiker-Bekel S, Walter F, Wehmeier UF, Kalinowski J, Puhler A., J. Biotechnol. 191(), 2014
PMID: 25169663
alpha-Glucosidase inhibitors. New complex oligosaccharides of microbial origin.
Schmidt DD, Frommer W, Junge B, Muller L, Wingender W, Truscheit E, Schafer D., Naturwissenschaften 64(10), 1977
PMID: 337162
[New enzyme inhibitors from microorganisms (author's transl)]
Frommer W, Junge B, Muller L, Schmidt D, Truscheit E., Planta Med. 35(3), 1979
PMID: 432298
The biosynthesis and metabolism of acarbose in actinoplanes sp. SE 50/110: a progress report
Wehmeier, Biocatal. Biotransform. 21(), 2003
The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110.
Schwientek P, Szczepanowski R, Ruckert C, Kalinowski J, Klein A, Selber K, Wehmeier UF, Stoye J, Puhler A., BMC Genomics 13(), 2012
PMID: 22443545
Improving the genome annotation of the acarbose producer Actinoplanes sp. SE50/110 by sequencing enriched 5'-ends of primary transcripts.
Schwientek P, Neshat A, Kalinowski J, Klein A, Ruckert C, Schneiker-Bekel S, Wendler S, Stoye J, Puhler A., J. Biotechnol. 190(), 2014
PMID: 24642337
Comparative RNA-sequencing of the acarbose producer Actinoplanes sp. SE50/110 cultivated in different growth media.
Schwientek P, Wendler S, Neshat A, Eirich C, Ruckert C, Klein A, Wehmeier UF, Kalinowski J, Stoye J, Puhler A., J. Biotechnol. 167(2), 2012
PMID: 23142701
The cytosolic and extracellular proteomes of Actinoplanes sp. SE50/110 led to the identification of gene products involved in acarbose metabolism.
Wendler S, Hurtgen D, Kalinowski J, Klein A, Niehaus K, Schulte F, Schwientek P, Wehlmann H, Wehmeier UF, Puhler A., J. Biotechnol. 167(2), 2012
PMID: 22944206
Comprehensive proteome analysis of Actinoplanes sp. SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster.
Wendler S, Otto A, Ortseifen V, Bonn F, Neshat A, Schneiker-Bekel S, Walter F, Wolf T, Zemke T, Wehmeier UF, Hecker M, Kalinowski J, Becher D, Puhler A., J Proteomics 125(), 2015
PMID: 25896738
Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis.
Otto A, Bernhardt J, Meyer H, Schaffer M, Herbst FA, Siebourg J, Mader U, Lalk M, Hecker M, Becher D., Nat Commun 1(), 2010
PMID: 21266987
Global proteome analysis of vancomycin stress in Staphylococcus aureus.
Hessling B, Bonn F, Otto A, Herbst FA, Rappen GM, Bernhardt J, Hecker M, Becher D., Int. J. Med. Microbiol. 303(8), 2013
PMID: 24161710
A correlation algorithm for the automated quantitative analysis of shotgun proteomics data.
MacCoss MJ, Wu CC, Liu H, Sadygov R, Yates JR 3rd., Anal. Chem. 75(24), 2003
PMID: 14670053
The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013.
Vizcaino JA, Cote RG, Csordas A, Dianes JA, Fabregat A, Foster JM, Griss J, Alpi E, Birim M, Contell J, O'Kelly G, Schoenegger A, Ovelleiro D, Perez-Riverol Y, Reisinger F, Rios D, Wang R, Hermjakob H., Nucleic Acids Res. 41(Database issue), 2012
PMID: 23203882
A quantitative analysis software tool for mass spectrometry-based proteomics.
Park SK, Venable JD, Xu T, Yates JR 3rd., Nat. Methods 5(4), 2008
PMID: 18345006
Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae.
Zybailov B, Mosley AL, Sardiu ME, Coleman MK, Florens L, Washburn MP., J. Proteome Res. 5(9), 2006
PMID: 16944946
Universal seeds for cDNA-to-genome comparison.
Zhou L, Stanton J, Florea L., BMC Bioinformatics 9(), 2008
PMID: 18215286
Surface localization of Helicobacter pylori urease and a heat shock protein homolog requires bacterial autolysis.
Phadnis SH, Parlow MH, Levy M, Ilver D, Caulkins CM, Connors JB, Dunn BE., Infect. Immun. 64(3), 1996
PMID: 8641799
Immunogold localization of the DnaK heat shock protein in Escherichia coli cells.
Bukau B, Reilly P, McCarty J, Walker GC., J. Gen. Microbiol. 139(1), 1993
PMID: 8450312
GroEL (Hsp60) of Clostridium difficile is involved in cell adherence.
Hennequin C, Porcheray F, Waligora-Dupriet A, Collignon A, Barc M, Bourlioux P, Karjalainen T., Microbiology (Reading, Engl.) 147(Pt 1), 2001
PMID: 11160803
Exploring the membrane proteome--challenges and analytical strategies.
Helbig AO, Heck AJ, Slijper M., J Proteomics 73(5), 2010
PMID: 20096812
Protein abundance profiling of the Escherichia coli cytosol.
Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, Frishman D., BMC Genomics 9(), 2008
PMID: 18304323
Characterizations of highly expressed genes of four fast-growing bacteria.
Karlin S, Mrazek J, Campbell A, Kaiser D., J. Bacteriol. 183(17), 2001
PMID: 11489855
A proteomic view of an important human pathogen--towards the quantification of the entire Staphylococcus aureus proteome.
Becher D, Hempel K, Sievers S, Zuhlke D, Pane-Farre J, Otto A, Fuchs S, Albrecht D, Bernhardt J, Engelmann S, Volker U, van Dijl JM, Hecker M., PLoS ONE 4(12), 2009
PMID: 19997597
Towards the entire proteome of the model bacterium Bacillus subtilis by gel-based and gel-free approaches.
Wolff S, Antelmann H, Albrecht D, Becher D, Bernhardt J, Bron S, Buttner K, van Dijl JM, Eymann C, Otto A, Tam le T, Hecker M., J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 849(1-2), 2006
PMID: 17055787
The malEFG gene cluster of Streptomyces coelicolor A3(2): characterization, disruption and transcriptional analysis.
van Wezel GP, White J, Bibb MJ, Postma PW., Mol. Gen. Genet. 254(5), 1997
PMID: 9197422
Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
Molecular genetics of a receptor protein for D-xylose, encoded by the gene xylF, in Escherichia coli.
Sumiya M, Davis EO, Packman LC, McDonald TP, Henderson PJ., Recept. Channels 3(2), 1995
PMID: 8581399
Molecular basis of ChvE function in sugar binding, sugar utilization, and virulence in Agrobacterium tumefaciens.
He F, Nair GR, Soto CS, Chang Y, Hsu L, Ronzone E, DeGrado WF, Binns AN., J. Bacteriol. 191(18), 2009
PMID: 19633083
Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein.
Cangelosi GA, Ankenbauer RG, Nester EW., Proc. Natl. Acad. Sci. U.S.A. 87(17), 1990
PMID: 2118656
Crystal structures of the bacterial solute receptor AcbH displaying an exclusive substrate preference for β-D-galactopyranose.
Licht A, Bulut H, Scheffel F, Daumke O, Wehmeier UF, Saenger W, Schneider E, Vahedi-Faridi A., J. Mol. Biol. 406(1), 2010
PMID: 21168419

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26597626
PubMed | Europe PMC

Suchen in

Google Scholar