Identification of Oxygen-Responsive Transcripts in the Silage Inoculant Lactobacillus buchneri CD034 by RNA Sequencing

Eikmeyer FG, Heinl S, Marx H, Pühler A, Grabherr R, Schlüter A (2015)
PLoS ONE 10(7): e0134149.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Eikmeyer, Felix GregorUniBi ; Heinl, Stefan; Marx, Hans; Pühler, AlfredUniBi ; Grabherr, Reingard; Schlüter, AndreasUniBi
Abstract / Bemerkung
The Lactobacillus buchneri CD034 strain, known to improve the ensiling process of green fodder and the quality of the silage itself was transcriptionally analyzed by sequencing of transcriptomes isolated under anaerobic vs. aerobic conditions. L. buchneri CD034 was first cultivated under anaerobic conditions and then shifted to aerobic conditions by aeration with 21% oxygen. Cultivations already showed that oxygen was consumed by L. buchneri CD034 after aeration of the culture while growth of L. buchneri CD034 was still observed. RNA sequencing data revealed that irrespective of the oxygen status of the culture, the most abundantly transcribed genes are required for basic cell functions such as protein biosynthesis, energy metabolism and lactic acid fermentation. Under aerobic conditions, 283 genes were found to be transcriptionally up-regulated while 198 genes were found to be down-regulated (p-value < 0.01). Up-regulated genes i. a. play a role in oxygen consumption via oxidation of pyruvate or lactate (pox, lctO). Additionally, genes encoding proteins required for decomposition of reactive oxygen species (ROS) such as glutathione reductase or NADH peroxidase were also found to be up-regulated. Genes related to pH homeostasis and redox potential balance were found to be down-regulated under aerobic conditions. Overall, genes required for lactic acid fermentation were hardly affected by the growth conditions applied. Genes identified to be differentially transcribed depending on the aeration status of the culture are suggested to specify the favorable performance of the strain in silage formation.
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI


Eikmeyer FG, Heinl S, Marx H, Pühler A, Grabherr R, Schlüter A. Identification of Oxygen-Responsive Transcripts in the Silage Inoculant Lactobacillus buchneri CD034 by RNA Sequencing. PLoS ONE. 2015;10(7): e0134149.
Eikmeyer, F. G., Heinl, S., Marx, H., Pühler, A., Grabherr, R., & Schlüter, A. (2015). Identification of Oxygen-Responsive Transcripts in the Silage Inoculant Lactobacillus buchneri CD034 by RNA Sequencing. PLoS ONE, 10(7), e0134149. doi:10.1371/journal.pone.0134149
Eikmeyer, F. G., Heinl, S., Marx, H., Pühler, A., Grabherr, R., and Schlüter, A. (2015). Identification of Oxygen-Responsive Transcripts in the Silage Inoculant Lactobacillus buchneri CD034 by RNA Sequencing. PLoS ONE 10:e0134149.
Eikmeyer, F.G., et al., 2015. Identification of Oxygen-Responsive Transcripts in the Silage Inoculant Lactobacillus buchneri CD034 by RNA Sequencing. PLoS ONE, 10(7): e0134149.
F.G. Eikmeyer, et al., “Identification of Oxygen-Responsive Transcripts in the Silage Inoculant Lactobacillus buchneri CD034 by RNA Sequencing”, PLoS ONE, vol. 10, 2015, : e0134149.
Eikmeyer, F.G., Heinl, S., Marx, H., Pühler, A., Grabherr, R., Schlüter, A.: Identification of Oxygen-Responsive Transcripts in the Silage Inoculant Lactobacillus buchneri CD034 by RNA Sequencing. PLoS ONE. 10, : e0134149 (2015).
Eikmeyer, Felix Gregor, Heinl, Stefan, Marx, Hans, Pühler, Alfred, Grabherr, Reingard, and Schlüter, Andreas. “Identification of Oxygen-Responsive Transcripts in the Silage Inoculant Lactobacillus buchneri CD034 by RNA Sequencing”. PLoS ONE 10.7 (2015): e0134149.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Lipoteichoic acid mediates binding of a Lactobacillus S-layer protein.
Bönisch E, Oh YJ, Anzengruber J, Hager FF, López-Guzmán A, Zayni S, Hinterdorfer P, Kosma P, Messner P, Duda KA, Schäffer C., Glycobiology 28(3), 2018
PMID: 29309573
A long and abundant non-coding RNA in Lactobacillus salivarius.
Cousin FJ, Lynch DB, Chuat V, Bourin MJB, Casey PG, Dalmasso M, Harris HMB, McCann A, O'Toole PW., Microb Genom 3(9), 2017
PMID: 29114404
Oxygen-Inducible Conversion of Lactate to Acetate in Heterofermentative Lactobacillus brevis ATCC 367.
Guo T, Zhang L, Xin Y, Xu Z, He H, Kong J., Appl Environ Microbiol 83(21), 2017
PMID: 28842545

56 References

Daten bereitgestellt von Europe PubMed Central.

Involvement of pyruvate oxidase activity and acetate production in the survival of Lactobacillus plantarum during the stationary phase of aerobic growth.
Goffin P, Muscariello L, Lorquet F, Stukkens A, Prozzi D, Sacco M, Kleerebezem M, Hols P., Appl. Environ. Microbiol. 72(12), 2006
PMID: 17012588
Transcriptomes reveal genetic signatures underlying physiological variations imposed by different fermentation conditions in Lactobacillus plantarum.
Bron PA, Wels M, Bongers RS, van Bokhorst-van de Veen H, Wiersma A, Overmars L, Marco ML, Kleerebezem M., PLoS ONE 7(7), 2012
PMID: 22802930
Characterization and functional analysis of the poxB gene, which encodes pyruvate oxidase in Lactobacillus plantarum.
Lorquet F, Goffin P, Muscariello L, Baudry JB, Ladero V, Sacco M, Kleerebezem M, Hols P., J. Bacteriol. 186(12), 2004
PMID: 15175288
Inactivation of ccpA and aeration affect growth, metabolite production and stress tolerance in Lactobacillus plantarum WCFS1.
Zotta T, Ricciardi A, Guidone A, Sacco M, Muscariello L, Mazzeo MF, Cacace G, Parente E., Int. J. Food Microbiol. 155(1-2), 2012
PMID: 22326142


Fermentation characteristics and aerobic stability of grass silage inoculated with Lactobacillus buchneri, with or without homofermentative lactic acid bacteria
The role of Lactobacillus buchneri in forage preservation.
Holzer M, Mayrhuber E, Danner H, Braun R., Trends Biotechnol. 21(6), 2003
PMID: 12788549
Acetic acid increases stability of silage under aerobic conditions.
Danner H, Holzer M, Mayrhuber E, Braun R., Appl. Environ. Microbiol. 69(1), 2003
PMID: 12514042
Insights into the completely annotated genome of Lactobacillus buchneri CD034, a strain isolated from stable grass silage.
Heinl S, Wibberg D, Eikmeyer F, Szczepanowski R, Blom J, Linke B, Goesmann A, Grabherr R, Schwab H, Puhler A, Schluter A., J. Biotechnol. 161(2), 2012
PMID: 22465289
Metagenome analyses reveal the influence of the inoculant Lactobacillus buchneri CD034 on the microbial community involved in grass ensiling.
Eikmeyer FG, Kofinger P, Poschenel A, Junemann S, Zakrzewski M, Heinl S, Mayrhuber E, Grabherr R, Puhler A, Schwab H, Schluter A., J. Biotechnol. 167(3), 2013
PMID: 23880441
Comparative RNA-sequencing of the acarbose producer Actinoplanes sp. SE50/110 cultivated in different growth media.
Schwientek P, Wendler S, Neshat A, Eirich C, Ruckert C, Klein A, Wehmeier UF, Kalinowski J, Stoye J, Puhler A., J. Biotechnol. 167(2), 2012
PMID: 23142701
Global transcriptome response to ionic liquid by a tropical rain forest soil bacterium, Enterobacter lignolyticus
Gene regulation by CcpA and catabolite repression explored by RNA-Seq in Streptococcus mutans.
Zeng L, Choi SC, Danko CG, Siepel A, Stanhope MJ, Burne RA., PLoS ONE 8(3), 2013
PMID: 23555977
A medium for the cultivation of lactobacilli


Quenching of microbial samples for increased reliability of microarray data.
Pieterse B, Jellema RH, van der Werf MJ., J. Microbiol. Methods 64(2), 2005
PMID: 15982764
Fast and accurate short read alignment with Burrows-Wheeler transform.
Li H, Durbin R., Bioinformatics 25(14), 2009
PMID: 19451168
The Sequence Alignment/Map format and SAMtools.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup., Bioinformatics 25(16), 2009
PMID: 19505943
ReadXplorer--visualization and analysis of mapped sequences.
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A., Bioinformatics 30(16), 2014
PMID: 24790157
Differential expression analysis for sequence count data.
Anders S, Huber W., Genome Biol. 11(10), 2010
PMID: 20979621
Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.
Edgar R, Domrachev M, Lash AE., Nucleic Acids Res. 30(1), 2002
PMID: 11752295
RegPrecise 3.0--a resource for genome-scale exploration of transcriptional regulation in bacteria.
Novichkov PS, Kazakov AE, Ravcheev DA, Leyn SA, Kovaleva GY, Sutormin RA, Kazanov MD, Riehl W, Arkin AP, Dubchak I, Rodionov DA., BMC Genomics 14(), 2013
PMID: 24175918
MEME SUITE: tools for motif discovery and searching.
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS., Nucleic Acids Res. 37(Web Server issue), 2009
PMID: 19458158
Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass
Relaxed control of sugar utilization in Lactobacillus brevis.
Kim JH, Shoemaker SP, Mills DA., Microbiology (Reading, Engl.) 155(Pt 4), 2009
PMID: 19332836
Mapping and quantifying mammalian transcriptomes by RNA-Seq
Lactobacillus surface layer proteins: structure, function and applications.
Hynonen U, Palva A., Appl. Microbiol. Biotechnol. 97(12), 2013
PMID: 23677442
Functional evolution of bacterial histone-like HU proteins.
Grove A., Curr Issues Mol Biol 13(1), 2010
PMID: 20484776
The Staphylococcus aureus lrgAB operon modulates murein hydrolase activity and penicillin tolerance.
Groicher KH, Firek BA, Fujimoto DF, Bayles KW., J. Bacteriol. 182(7), 2000
PMID: 10714982
Rfam 11.0: 10 years of RNA families
Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover.
Anderson KL, Roberts C, Disz T, Vonstein V, Hwang K, Overbeek R, Olson PD, Projan SJ, Dunman PM., J. Bacteriol. 188(19), 2006
PMID: 16980476
Examination of Lactobacillus plantarum lactate metabolism side effects in relation to the modulation of aeration parameters.
Quatravaux S, Remize F, Bryckaert E, Colavizza D, Guzzo J., J. Appl. Microbiol. 101(4), 2006
PMID: 16968302
Effect of salt and culture aeration on lactate and acetate production by Lactobacillus plantarum
Responses of lactic acid bacteria to oxygen
H(2)O(2) production in species of the Lactobacillus acidophilus group: a central role for a novel NADH-dependent flavin reductase.
Hertzberger R, Arents J, Dekker HL, Pridmore RD, Gysler C, Kleerebezem M, de Mattos MJ., Appl. Environ. Microbiol. 80(7), 2014
PMID: 24487531
Involvement of the mannose phosphotransferase system of Lactobacillus plantarum WCFS1 in peroxide stress tolerance.
Stevens MJ, Molenaar D, de Jong A, de Vos WM, Kleerebezem M., Appl. Environ. Microbiol. 76(11), 2010
PMID: 20363783

Proteomic analysis of log to stationary growth phase Lactobacillus plantarum cells and a 2-DE database.
Cohen DP, Renes J, Bouwman FG, Zoetendal EG, Mariman E, de Vos WM, Vaughan EE., Proteomics 6(24), 2006
PMID: 17115453
Proteomics analysis of Lactobacillus casei Zhang, a new probiotic bacterium isolated from traditional home-made koumiss in Inner Mongolia of China.
Wu R, Wang W, Yu D, Zhang W, Li Y, Sun Z, Wu J, Meng H, Zhang H., Mol. Cell Proteomics 8(10), 2009
PMID: 19508964
Temporal gene expression and probiotic attributes of Lactobacillus acidophilus during growth in milk.
Azcarate-Peril MA, Tallon R, Klaenhammer TR., J. Dairy Sci. 92(3), 2009
PMID: 19233780
Growth phase-associated changes in the proteome and transcriptome of Lactobacillus rhamnosus GG in industrial-type whey medium.
Laakso K, Koskenniemi K, Koponen J, Kankainen M, Surakka A, Salusjarvi T, Auvinen P, Savijoki K, Nyman TA, Kalkkinen N, Tynkkynen S, Varmanen P., Microb Biotechnol 4(6), 2011
PMID: 21883975
Stress responses in lactic acid bacteria.
van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E., Antonie Van Leeuwenhoek 82(1-4), 2002
PMID: 12369188
Oxygen-dependent regulation of the expression of the catalase gene katA of Lactobacillus sakei LTH677.
Hertel C, Schmidt G, Fischer M, Oellers K, Hammes WP., Appl. Environ. Microbiol. 64(4), 1998
PMID: 9546173
Agmatine deiminase pathway genes in Lactobacillus brevis are linked to the tyrosine decarboxylation operon in a putative acid resistance locus.
Lucas PM, Blancato VS, Claisse O, Magni C, Lolkema JS, Lonvaud-Funel A., Microbiology (Reading, Engl.) 153(Pt 7), 2007
PMID: 17600066
Factors affecting the production of putrescine from agmatine by Lactobacillus hilgardii XB isolated from wine.
Arena ME, Landete JM, Manca de Nadra MC, Pardo I, Ferrer S., J. Appl. Microbiol. 105(1), 2008
PMID: 18248375
There is a specific response to pH by isolates of Haemophilus influenzae and this has a direct influence on biofilm formation.
Ishak N, Tikhomirova A, Bent SJ, Ehrlich GD, Hu FZ, Kidd SP., BMC Microbiol. 14(), 2014
PMID: 24555828
Anaerobic conversion of lactic acid to acetic acid and 1, 2-propanediol by Lactobacillus buchneri.
Oude Elferink SJ, Krooneman J, Gottschal JC, Spoelstra SF, Faber F, Driehuis F., Appl. Environ. Microbiol. 67(1), 2001
PMID: 11133436
Transcriptional regulation of central carbon and energy metabolism in bacteria by redox-responsive repressor Rex.
Ravcheev DA, Li X, Latif H, Zengler K, Leyn SA, Korostelev YD, Kazakov AE, Novichkov PS, Osterman AL, Rodionov DA., J. Bacteriol. 194(5), 2011
PMID: 22210771



Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 26230316
PubMed | Europe PMC

Suchen in

Google Scholar