Comprehensive proteome analysis of Actinoplanes sp SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster

Wendler S, Otto A, Ortseifen V, Bonn F, Neshat A, Schneiker-Bekel S, Walter F, Wolf T, Zemke T, Wehmeier UF, Hecker M, et al. (2015)
Journal of Proteomics 125: 1-16.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
Abstract / Bemerkung
Acarbose is an alpha-glucosidase inhibitor produced by Actinoplanes sp. SE50/110 that is medically important due to its application in the treatment of type2 diabetes. In this work, a comprehensive proteome analysis of Actinoplanes sp. SE50/110 was carried out to determine the location of proteins of the acarbose (acb) and the putative pyochelin (pch) biosynthesis gene cluster. Therefore, a comprehensive state-of-the-art proteomics approach combining subcellular fractionation, shotgun proteomics and spectral counting to assess the relative abundance of proteins within fractions was applied. The analysis of four different proteome fractions (cytosolic, enriched membrane, membrane shaving and extracellular fraction) resulted in the identification of 1582 of the 8270 predicted proteins. All 22 Acb-proteins and 21 of the 23 Pch-proteins were detected. Predicted membrane-associated, integral membrane or extracellular proteins of the pch and the acb gene cluster were found among the most abundant proteins in corresponding fractions. Intracellular biosynthetic proteins of both gene clusters were not only detected in the cytosolic, but also in the enriched membrane fraction, indicating that the biosynthesis of acarbose and putative pyochelin metabolites takes place at the inner membrane. Biological significance Actinoplanes sp. SE50/110 is a natural producer of the alpha-glucosidase inhibitor acarbose, a bacterial secondary metabolite that is used as a drug for the treatment of type 2 diabetes, a disease which is a global pandemic that currently affects 387 million people and accounts for 11% of worldwide healthcare expenditures (www.idf.org). The work presented here is the first comprehensive investigation of protein localization and abundance in Actinoplanes sp. SE50/110 and provides an extensive source of information for the selection of genes for future mutational analysis and other hypothesis driven experiments. The conclusion that acarbose or pyochelin family siderophores are synthesized at the inner side of the cytoplasmic membrane determined from this work, indicates that studying corresponding intermediates will be challenging. In addition to previous studies on the genome and transcriptome, the work presented here demonstrates that the next omic level, the proteome, is now accessible for detailed physiological analysis of Actinoplanes sp. SE50/110, as well as mutants derived from this and related species. (C) 2015 Elsevier B.V. All rights reserved.
Erscheinungsjahr
Zeitschriftentitel
Journal of Proteomics
Band
125
Seite(n)
1-16
ISSN
PUB-ID

Zitieren

Wendler S, Otto A, Ortseifen V, et al. Comprehensive proteome analysis of Actinoplanes sp SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster. Journal of Proteomics. 2015;125:1-16.
Wendler, S., Otto, A., Ortseifen, V., Bonn, F., Neshat, A., Schneiker-Bekel, S., Walter, F., et al. (2015). Comprehensive proteome analysis of Actinoplanes sp SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster. Journal of Proteomics, 125, 1-16. doi:10.1016/j.jprot.2015.04.013
Wendler, S., Otto, A., Ortseifen, V., Bonn, F., Neshat, A., Schneiker-Bekel, S., Walter, F., Wolf, T., Zemke, T., Wehmeier, U. F., et al. (2015). Comprehensive proteome analysis of Actinoplanes sp SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster. Journal of Proteomics 125, 1-16.
Wendler, S., et al., 2015. Comprehensive proteome analysis of Actinoplanes sp SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster. Journal of Proteomics, 125, p 1-16.
S. Wendler, et al., “Comprehensive proteome analysis of Actinoplanes sp SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster”, Journal of Proteomics, vol. 125, 2015, pp. 1-16.
Wendler, S., Otto, A., Ortseifen, V., Bonn, F., Neshat, A., Schneiker-Bekel, S., Walter, F., Wolf, T., Zemke, T., Wehmeier, U.F., Hecker, M., Kalinowski, J., Becher, D., Pühler, A.: Comprehensive proteome analysis of Actinoplanes sp SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster. Journal of Proteomics. 125, 1-16 (2015).
Wendler, Sergej, Otto, Andreas, Ortseifen, Vera, Bonn, Florian, Neshat, Armin, Schneiker-Bekel, Susanne, Walter, Frederik, Wolf, Timo, Zemke, Till, Wehmeier, Udo F., Hecker, Michael, Kalinowski, Jörn, Becher, Doerte, and Pühler, Alfred. “Comprehensive proteome analysis of Actinoplanes sp SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster”. Journal of Proteomics 125 (2015): 1-16.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Genome improvement of the acarbose producer Actinoplanes sp. SE50/110 and annotation refinement based on RNA-seq analysis.
Wolf T, Schneiker-Bekel S, Neshat A, Ortseifen V, Wibberg D, Zemke T, Pühler A, Kalinowski J., J Biotechnol 251(), 2017
PMID: 28427920
The MalR type regulator AcrC is a transcriptional repressor of acarbose biosynthetic genes in Actinoplanes sp. SE50/110.
Wolf T, Droste J, Gren T, Ortseifen V, Schneiker-Bekel S, Zemke T, Pühler A, Kalinowski J., BMC Genomics 18(1), 2017
PMID: 28743243
Comparative proteome analysis of Actinoplanes sp. SE50/110 grown with maltose or glucose shows minor differences for acarbose biosynthesis proteins but major differences for saccharide transporters.
Wendler S, Otto A, Ortseifen V, Bonn F, Neshat A, Schneiker-Bekel S, Wolf T, Zemke T, Wehmeier UF, Hecker M, Kalinowski J, Becher D, Pühler A., J Proteomics 131(), 2016
PMID: 26597626
Targeted genome editing in the rare actinomycete Actinoplanes sp. SE50/110 by using the CRISPR/Cas9 System.
Wolf T, Gren T, Thieme E, Wibberg D, Zemke T, Pühler A, Kalinowski J., J Biotechnol 231(), 2016
PMID: 27262504

145 References

Daten bereitgestellt von Europe PubMed Central.

Acarbose — ein neues Wirkprinzip in der Diabetestherapie
Bischoff, Nachr Chemie Tech Lab 42(), 1994
Chemistry and biochemistry of microbial α-glucosidase inhibitors
Truscheit, Angew Chem Int Ed Engl 20(), 1981
[New enzyme inhibitors from microorganisms (author's transl)]
Frommer W, Junge B, Muller L, Schmidt D, Truscheit E., Planta Med. 35(3), 1979
PMID: 432298
Biotechnology and molecular biology of the alpha-glucosidase inhibitor acarbose.
Wehmeier UF, Piepersberg W., Appl. Microbiol. Biotechnol. 63(6), 2003
PMID: 14669056
Cell wall composition in relation to the taxonomy of some Actinoplanaceae.
Szaniszlo PJ, Gooder H., J. Bacteriol. 94(6), 1967
PMID: 6074406

AUTHOR UNKNOWN, 0
Members of the genus Actinoplanes and their antibiotics.
Parenti F, Coronelli C., Annu. Rev. Microbiol. 33(), 1979
PMID: 386928
Medium optimization for acarbose production by Actinoplanes sp. A 56 using the response surface methodology
Wei, Afr J Biotechnol 9(), 2010
An effective and simplified scale-up strategy for acarbose fermentation based on the carbon source control
Li Kt, Wie Sj, Huang L, Cheng X., World J. Microbiol. Biotechnol. 28(2), 2012
PMID: IND44746154
A new microtiter plate-based screening method for microorganisms producing alpha-amylase inhibitors
Feng, Biotechnol Bioprocess Eng 16(), 2011
Optimization of media composition and culture conditions for acarbose production by Actinoplanes utahensis ZJB-08196
Wang YJ, Liu LL, Feng ZH, Liu ZQ, Zheng YG., World J. Microbiol. Biotechnol. 27(12), 2011
PMID: IND44746074
Studies designed to localize the essential structural unit of glycoside-hydrolase inhibitors of the acarbose type
Heiker, 1981
alpha-Glucosidase inhibitors. New complex oligosaccharides of microbial origin.
Schmidt DD, Frommer W, Junge B, Muller L, Wingender W, Truscheit E, Schafer D., Naturwissenschaften 64(10), 1977
PMID: 337162
Carbon source dependent biosynthesis of acarviose metabolites in Actinoplanes sp. SE50/110.
Wendler S, Ortseifen V, Persicke M, Klein A, Neshat A, Niehaus K, Schneiker-Bekel S, Walter F, Wehmeier UF, Kalinowski J, Puhler A., J. Biotechnol. 191(), 2014
PMID: 25169663
Identification, cloning, expression, and characterization of the extracellular acarbose-modifying glycosyltransferase, AcbD, from Actinoplanes sp. strain SE50.
Hemker M, Stratmann A, Goeke K, Schroder W, Lenz J, Piepersberg W, Pape H., J. Bacteriol. 183(15), 2001
PMID: 11443082

AUTHOR UNKNOWN, 0
The biosynthesis and metabolism of acarbose in Actinoplanes sp. SE 50/110: a progress report
Wehmeier, Biocatal Biotransform 21(), 2003
Biosynthetic studies on the alpha-glucosidase inhibitor acarbose in Actinoplanes sp.: source of the maltose unit.
Lee S, Sauerbrei B, Niggemann J, Egelkrout E., J. Antibiot. 50(11), 1997
PMID: 9592570
Studies on the biosynthesis of the alpha-glucosidase inhibitor acarbose: valienamine, a m-C7N unit not derived from the shikimate pathway.
Degwert U, van Hulst R, Pape H, Herrold RE, Beale JM, Keller PJ, Lee JP, Floss HG., J. Antibiot. 40(6), 1987
PMID: 3301773
Biosynthetic studies on the α-glucosidase inhibitor acarbose in Actinoplanes sp.: 2-epi–5-epi-valiolone is the direct precursor of the valienamine moiety
Mahmud, J Am Chem Soc 121(), 1999
Biosynthesis of the C(7)-cyclitol moiety of acarbose in Actinoplanes species SE50/110. 7-O-phosphorylation of the initial cyclitol precursor leads to proposal of a new biosynthetic pathway.
Zhang CS, Stratmann A, Block O, Bruckner R, Podeschwa M, Altenbach HJ, Wehmeier UF, Piepersberg W., J. Biol. Chem. 277(25), 2002
PMID: 11937512
Identification of a 1-epi-valienol 7-kinase activity in the producer of acarbose, Actinoplanes sp. SE50/110.
Zhang CS, Podeschwa M, Block O, Altenbach HJ, Piepersberg W, Wehmeier UF., FEBS Lett. 540(1-3), 2003
PMID: 12681482
Identification of a 1-epi-valienol 7-kinase activity in the producer of acarbose, Actinoplanes sp. SE50/110.
Zhang CS, Podeschwa M, Block O, Altenbach HJ, Piepersberg W, Wehmeier UF., FEBS Lett. 540(1-3), 2003
PMID: 12681482
The acbH gene of Actinoplanes sp. encodes a solute receptor with binding activities for acarbose and longer homologs.
Brunkhorst C, Wehmeier UF, Piepersberg W, Schneider E., Res. Microbiol. 156(3), 2004
PMID: 15808935
Crystal structures of the bacterial solute receptor AcbH displaying an exclusive substrate preference for β-D-galactopyranose.
Licht A, Bulut H, Scheffel F, Daumke O, Wehmeier UF, Saenger W, Schneider E, Vahedi-Faridi A., J. Mol. Biol. 406(1), 2010
PMID: 21168419
The cytosolic and extracellular proteomes of Actinoplanes sp. SE50/110 led to the identification of gene products involved in acarbose metabolism.
Wendler S, Hurtgen D, Kalinowski J, Klein A, Niehaus K, Schulte F, Schwientek P, Wehlmann H, Wehmeier UF, Puhler A., J. Biotechnol. 167(2), 2012
PMID: 22944206
The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110.
Schwientek P, Szczepanowski R, Ruckert C, Kalinowski J, Klein A, Selber K, Wehmeier UF, Stoye J, Puhler A., BMC Genomics 13(), 2012
PMID: 22443545
Improving the genome annotation of the acarbose producer Actinoplanes sp. SE50/110 by sequencing enriched 5'-ends of primary transcripts.
Schwientek P, Neshat A, Kalinowski J, Klein A, Ruckert C, Schneiker-Bekel S, Wendler S, Stoye J, Puhler A., J. Biotechnol. 190(), 2014
PMID: 24642337
Sequencing of high G+C microbial genomes using the ultrafast pyrosequencing technology.
Schwientek P, Szczepanowski R, Ruckert C, Stoye J, Puhler A., J. Biotechnol. 155(1), 2011
PMID: 21536083
Substantial biases in ultra-short read data sets from high-throughput DNA sequencing.
Dohm JC, Lottaz C, Borodina T, Himmelbauer H., Nucleic Acids Res. 36(16), 2008
PMID: 18660515
Comparative RNA-sequencing of the acarbose producer Actinoplanes sp. SE50/110 cultivated in different growth media.
Schwientek P, Wendler S, Neshat A, Eirich C, Ruckert C, Klein A, Wehmeier UF, Kalinowski J, Stoye J, Puhler A., J. Biotechnol. 167(2), 2012
PMID: 23142701
Bacterial membrane proteomics.
Poetsch A, Wolters D., Proteomics 8(19), 2008
PMID: 18780352
Lipoproteins of gram-positive bacteria.
Sutcliffe IC, Russell RR., J. Bacteriol. 177(5), 1995
PMID: 7868582
Proteomics of protein secretion by Bacillus subtilis: separating the "secrets" of the secretome.
Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos R, Dubois JY, Westers H, Zanen G, Quax WJ, Kuipers OP, Bron S, Hecker M, van Dijl JM., Microbiol. Mol. Biol. Rev. 68(2), 2004
PMID: 15187182
Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold 'em, knowing when to fold 'em.
Hutchings MI, Palmer T, Harrington DJ, Sutcliffe IC., Trends Microbiol. 17(1), 2008
PMID: 19059780
Exploring the membrane proteome--challenges and analytical strategies.
Helbig AO, Heck AJ, Slijper M., J Proteomics 73(5), 2010
PMID: 20096812
Universal seeds for cDNA-to-genome comparison.
Zhou L, Stanton J, Florea L., BMC Bioinformatics 9(), 2008
PMID: 18215286
A reference map of the membrane proteome of Enterococcus faecalis.
Maddalo G, Chovanec P, Stenberg-Bruzell F, Nielsen HV, Jensen-Seaman MI, Ilag LL, Kline KA, Daley DO., Proteomics 11(19), 2011
PMID: 21800426
Novel twin-arginine translocation pathway-dependent phenotypes of Bacillus subtilis unveiled by quantitative proteomics.
Goosens VJ, Otto A, Glasner C, Monteferrante CC, van der Ploeg R, Hecker M, Becher D, van Dijl JM., J. Proteome Res. 12(2), 2013
PMID: 23256564
Protein translocation across the bacterial cytoplasmic membrane.
Driessen AJ, Nouwen N., Annu. Rev. Biochem. 77(), 2008
PMID: 18078384
An inventory of the bacterial macromolecular components and their spatial organization.
Vendeville A, Lariviere D, Fourmentin E., FEMS Microbiol. Rev. 35(2), 2010
PMID: 20969605
A comprehensive proteomics and transcriptomics analysis of Bacillus subtilis salt stress adaptation.
Hahne H, Mader U, Otto A, Bonn F, Steil L, Bremer E, Hecker M, Becher D., J. Bacteriol. 192(3), 2009
PMID: 19948795
A proteomic view of an important human pathogen--towards the quantification of the entire Staphylococcus aureus proteome.
Becher D, Hempel K, Sievers S, Zuhlke D, Pane-Farre J, Otto A, Fuchs S, Albrecht D, Bernhardt J, Engelmann S, Volker U, van Dijl JM, Hecker M., PLoS ONE 4(12), 2009
PMID: 19997597
Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis.
Otto A, Bernhardt J, Meyer H, Schaffer M, Herbst FA, Siebourg J, Mader U, Lalk M, Hecker M, Becher D., Nat Commun 1(), 2010
PMID: 21266987
Global proteome analysis of vancomycin stress in Staphylococcus aureus.
Hessling B, Bonn F, Otto A, Herbst FA, Rappen GM, Bernhardt J, Hecker M, Becher D., Int. J. Med. Microbiol. 303(8), 2013
PMID: 24161710
Complementary analysis of the vegetative membrane proteome of the human pathogen Staphylococcus aureus.
Wolff S, Hahne H, Hecker M, Becher D., Mol. Cell Proteomics 7(8), 2008
PMID: 18460691
The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013.
Vizcaino JA, Cote RG, Csordas A, Dianes JA, Fabregat A, Foster JM, Griss J, Alpi E, Birim M, Contell J, O'Kelly G, Schoenegger A, Ovelleiro D, Perez-Riverol Y, Reisinger F, Rios D, Wang R, Hermjakob H., Nucleic Acids Res. 41(Database issue), 2012
PMID: 23203882
Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae.
Zybailov B, Mosley AL, Sardiu ME, Coleman MK, Florens L, Washburn MP., J. Proteome Res. 5(9), 2006
PMID: 16944946
SignalP 4.0: discriminating signal peptides from transmembrane regions.
Petersen TN, Brunak S, von Heijne G, Nielsen H., Nat. Methods 8(10), 2011
PMID: 21959131
A simple method for displaying the hydropathic character of a protein.
Kyte J, Doolittle RF., J. Mol. Biol. 157(1), 1982
PMID: 7108955
Prediction of twin-arginine signal peptides.
Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S., BMC Bioinformatics 6(), 2005
PMID: 15992409
Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes.
Krogh A, Larsson B, von Heijne G, Sonnhammer EL., J. Mol. Biol. 305(3), 2001
PMID: 11152613
Data, information, knowledge and principle: back to metabolism in KEGG.
Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M., Nucleic Acids Res. 42(Database issue), 2013
PMID: 24214961
A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis.
Buttner K, Bernhardt J, Scharf C, Schmid R, Mader U, Eymann C, Antelmann H, Volker A, Volker U, Hecker M., Electrophoresis 22(14), 2001
PMID: 11565787
Two-dimensional reference map of Agrobacterium tumefaciens proteins.
Rosen R, Sacher A, Shechter N, Becher D, Buttner K, Biran D, Hecker M, Ron EZ., Proteomics 4(4), 2004
PMID: 15048987
The extracellular and cytoplasmic proteomes of the non-virulent Bacillus anthracis strain UM23C1-2.
Antelmann H, Williams RC, Miethke M, Wipat A, Albrecht D, Harwood CR, Hecker M., Proteomics 5(14), 2005
PMID: 16121336
Gel-free and gel-based proteomics in Bacillus subtilis: a comparative study.
Wolff S, Otto A, Albrecht D, Zeng JS, Buttner K, Gluckmann M, Hecker M, Becher D., Mol. Cell Proteomics 5(7), 2006
PMID: 16552027
Global relative and absolute quantitation in microbial proteomics.
Otto A, Bernhardt J, Hecker M, Becher D., Curr. Opin. Microbiol. 15(3), 2012
PMID: 22445110
The Staphylococcus aureus proteome.
Otto A, van Dijl JM, Hecker M, Becher D., Int. J. Med. Microbiol. 304(2), 2013
PMID: 24439828
Quantitative proteomics in the field of microbiology.
Otto A, Becher D, Schmidt F., Proteomics 14(4-5), 2014
PMID: 24376008
Subcellular localization and chaperone activities of Borrelia burgdorferi Hsp60 and Hsp70.
Scopio A, Johnson P, Laquerre A, Nelson DR., J. Bacteriol. 176(21), 1994
PMID: 7961395
The proteome of Mannheimia succiniciproducens, a capnophilic rumen bacterium.
Lee JW, Lee SY, Song H, Yoo JS., Proteomics 6(12), 2006
PMID: 16758448
Mapping the membrane proteome of Corynebacterium glutamicum.
Schluesener D, Fischer F, Kruip J, Rogner M, Poetsch A., Proteomics 5(5), 2005
PMID: 15717325
Monitoring of changes in the membrane proteome during stationary phase adaptation of Bacillus subtilis using in vivo labeling techniques.
Dreisbach A, Otto A, Becher D, Hammer E, Teumer A, Gouw JW, Hecker M, Volker U., Proteomics 8(10), 2008
PMID: 18491319
Physiological adaptation of the Rhodococcus jostii RHA1 membrane proteome to steroids as growth substrates.
Haußmann U, Wolters DA, Franzel B, Eltis LD, Poetsch A., J. Proteome Res. 12(3), 2013
PMID: 23360181
Comparative membrane proteome analysis of three Borrelia species.
Gesslbauer B, Poljak A, Handwerker C, Schuler W, Schwendenwein D, Weber C, Lundberg U, Meinke A, Kungl AJ., Proteomics 12(6), 2012
PMID: 22539435
Comparative proteome analysis of subcellular fractions from Borrelia burgdorferi by NEPHGE and IPG.
Nowalk AJ, Nolder C, Clifton DR, Carroll JA., Proteomics 6(7), 2006
PMID: 16485259
A comprehensive proteome of Mycoplasma genitalium.
Parraga-Nino N, Colome-Calls N, Canals F, Querol E, Ferrer-Navarro M., J. Proteome Res. 11(6), 2012
PMID: 22582988
GroEL (Hsp60) of Clostridium difficile is involved in cell adherence.
Hennequin C, Porcheray F, Waligora-Dupriet A, Collignon A, Barc M, Bourlioux P, Karjalainen T., Microbiology (Reading, Engl.) 147(Pt 1), 2001
PMID: 11160803
Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
Molecular genetics of a receptor protein for D-xylose, encoded by the gene xylF, in Escherichia coli.
Sumiya M, Davis EO, Packman LC, McDonald TP, Henderson PJ., Recept. Channels 3(2), 1995
PMID: 8581399
Molecular basis of ChvE function in sugar binding, sugar utilization, and virulence in Agrobacterium tumefaciens.
He F, Nair GR, Soto CS, Chang Y, Hsu L, Ronzone E, DeGrado WF, Binns AN., J. Bacteriol. 191(18), 2009
PMID: 19633083
Characterization of a sugar-binding protein from Azospirillum brasilense mediating chemotaxis to and uptake of sugars.
Van Bastelaere E, Lambrecht M, Vermeiren H, Van Dommelen A, Keijers V, Proost P, Vanderleyden J., Mol. Microbiol. 32(4), 1999
PMID: 10361275
Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein.
Cangelosi GA, Ankenbauer RG, Nester EW., Proc. Natl. Acad. Sci. U.S.A. 87(17), 1990
PMID: 2118656
Analyses of soluble and membrane proteomes of Ralstonia eutropha H16 reveal major changes in the protein complement in adaptation to lithoautotrophy.
Kohlmann Y, Pohlmann A, Otto A, Becher D, Cramm R, Lutte S, Schwartz E, Hecker M, Friedrich B., J. Proteome Res. 10(6), 2011
PMID: 21561103
Proteomics characterization of cytoplasmic and lipid-associated membrane proteins of human pathogen Mycoplasma fermentans M64.
Liu YC, Lin IH, Chung WJ, Hu WS, Ng WV, Lu CY, Huang TY, Shu HW, Hsiao KJ, Tsai SF, Chang CH, Lin CH., PLoS ONE 7(4), 2012
PMID: 22536369
Comparative proteomic analysis of extracellular proteins of enterohemorrhagic and enteropathogenic Escherichia coli strains and their ihf and ler mutants.
Li M, Rosenshine I, Tung SL, Wang XH, Friedberg D, Hew CL, Leung KY., Appl. Environ. Microbiol. 70(9), 2004
PMID: 15345410
Identification of quorum-sensing regulated proteins in the opportunistic pathogen Pseudomonas aeruginosa by proteomics.
Arevalo-Ferro C, Hentzer M, Reil G, Gorg A, Kjelleberg S, Givskov M, Riedel K, Eberl L., Environ. Microbiol. 5(12), 2003
PMID: 14641579
Comprehensive analysis of the extracellular proteins from Xanthomonas campestris pv. campestris B100.
Watt SA, Wilke A, Patschkowski T, Niehaus K., Proteomics 5(1), 2005
PMID: 15619296
MsmE, a lipoprotein involved in sugar transport in Streptococcus mutans.
Sutcliffe IC, Tao L, Ferretti JJ, Russell RR., J. Bacteriol. 175(6), 1993
PMID: 8449892
Cell physiology and protein secretion of Bacillus licheniformis compared to Bacillus subtilis.
Voigt B, Antelmann H, Albrecht D, Ehrenreich A, Maurer KH, Evers S, Gottschalk G, van Dijl JM, Schweder T, Hecker M., J. Mol. Microbiol. Biotechnol. 16(1-2), 2008
PMID: 18957862
Aerobic deconstruction of cellulosic biomass by an insect-associated Streptomyces.
Takasuka TE, Book AJ, Lewin GR, Currie CR, Fox BG., Sci Rep 3(), 2013
PMID: 23301151
The role of the membrane-spanning domain of type I signal peptidases in substrate cleavage site selection.
Carlos JL, Paetzel M, Brubaker G, Karla A, Ashwell CM, Lively MO, Cao G, Bullinger P, Dalbey RE., J. Biol. Chem. 275(49), 2000
PMID: 10982814
A comparison of signal sequence prediction methods using a test set of signal peptides.
Menne KM, Hermjakob H, Apweiler R., Bioinformatics 16(8), 2000
PMID: 11099261
Improved prediction of signal peptides: SignalP 3.0.
Bendtsen JD, Nielsen H, von Heijne G, Brunak S., J. Mol. Biol. 340(4), 2004
PMID: 15223320
PrediSi: prediction of signal peptides and their cleavage positions.
Hiller K, Grote A, Scheer M, Munch R, Jahn D., Nucleic Acids Res. 32(Web Server issue), 2004
PMID: 15215414
Prediction of signal peptides and signal anchors by a hidden Markov model.
Nielsen H, Krogh A., Proc Int Conf Intell Syst Mol Biol 6(), 1998
PMID: 9783217
A combined transmembrane topology and signal peptide prediction method.
Kall L, Krogh A, Sonnhammer EL., J. Mol. Biol. 338(5), 2004
PMID: 15111065

Hemker, 1997
A comprehensive proteome map of growing Bacillus subtilis cells.
Eymann C, Dreisbach A, Albrecht D, Bernhardt J, Becher D, Gentner S, Tam le T, Buttner K, Buurman G, Scharf C, Venz S, Volker U, Hecker M., Proteomics 4(10), 2004
PMID: 15378759
The liposoluble proteome of Mycoplasma agalactiae: an insight into the minimal protein complement of a bacterial membrane.
Cacciotto C, Addis MF, Pagnozzi D, Chessa B, Coradduzza E, Carcangiu L, Uzzau S, Alberti A, Pittau M., BMC Microbiol. 10(), 2010
PMID: 20738845
The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis.
Vorholter FJ, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T, Ruckert C, Schmid J, Sidhu VK, Sieber V, Tauch A, Watt SA, Weisshaar B, Becker A, Niehaus K, Puhler A., J. Biotechnol. 134(1-2), 2008
PMID: 18304669
Membrane localization of motility, signaling, and polyketide synthetase proteins in Myxococcus xanthus.
Simunovic V, Gherardini FC, Shimkets LJ., J. Bacteriol. 185(17), 2003
PMID: 12923079
Evidence for a multimeric subtilin synthetase complex.
Kiesau P, Eikmanns U, Gutowski-Eckel Z, Weber S, Hammelmann M, Entian KD., J. Bacteriol. 179(5), 1997
PMID: 9045802
Biosynthesis of the lantibiotic nisin: genomic organization and membrane localization of the NisB protein.
Engelke G, Gutowski-Eckel Z, Hammelmann M, Entian KD., Appl. Environ. Microbiol. 58(11), 1992
PMID: 1482192
Complexes of sequential metabolic enzymes.
Srere PA., Annu. Rev. Biochem. 56(), 1987
PMID: 2441660
Channeling of substrates and intermediates in enzyme-catalyzed reactions.
Huang X, Holden HM, Raushel FM., Annu. Rev. Biochem. 70(), 2001
PMID: 11395405
Engineering the spatial organization of metabolic enzymes: mimicking nature's synergy.
Conrado RJ, Varner JD, DeLisa MP., Curr. Opin. Biotechnol. 19(5), 2008
PMID: 18725290
Plant science. Dynamic metabolons.
Moller BL., Science 330(6009), 2010
PMID: 21127236
Designing biological compartmentalization.
Chen AH, Silver PA., Trends Cell Biol. 22(12), 2012
PMID: 22841504
antiSMASH 2.0--a versatile platform for genome mining of secondary metabolite producers.
Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T., Nucleic Acids Res. 41(Web Server issue), 2013
PMID: 23737449
antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences.
Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R., Nucleic Acids Res. 39(Web Server issue), 2011
PMID: 21672958
Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa.
Cox CD, Rinehart KL Jr, Moore ML, Cook JC Jr., Proc. Natl. Acad. Sci. U.S.A. 78(7), 1981
PMID: 6794030
Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin.
Youard ZA, Mislin GL, Majcherczyk PA, Schalk IJ, Reimmann C., J. Biol. Chem. 282(49), 2007
PMID: 17938167
Genomics of secondary metabolite production by Pseudomonas spp.
Gross H, Loper JE., Nat Prod Rep 26(11), 2009
PMID: 19844639
The plant pathogen Streptomyces scabies 87-22 has a functional pyochelin biosynthetic pathway that is regulated by TetR- and AfsR-family proteins.
Seipke RF, Song L, Bicz J, Laskaris P, Yaxley AM, Challis GL, Loria R., Microbiology (Reading, Engl.) 157(Pt 9), 2011
PMID: 21757492
Pyochelin, a siderophore of Pseudomonas aeruginosa: physicochemical characterization of the iron(III), copper(II) and zinc(II) complexes.
Brandel J, Humbert N, Elhabiri M, Schalk IJ, Mislin GL, Albrecht-Gary AM., Dalton Trans 41(9), 2012
PMID: 22261733
The TetR family of transcriptional repressors.
Ramos JL, Martinez-Bueno M, Molina-Henares AJ, Teran W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R., Microbiol. Mol. Biol. Rev. 69(2), 2005
PMID: 15944459
Protein abundance profiling of the Escherichia coli cytosol.
Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, Frishman D., BMC Genomics 9(), 2008
PMID: 18304323
Characterizations of highly expressed genes of four fast-growing bacteria.
Karlin S, Mrazek J, Campbell A, Kaiser D., J. Bacteriol. 183(17), 2001
PMID: 11489855
Towards the entire proteome of the model bacterium Bacillus subtilis by gel-based and gel-free approaches.
Wolff S, Antelmann H, Albrecht D, Becher D, Bernhardt J, Bron S, Buttner K, van Dijl JM, Eymann C, Otto A, Tam le T, Hecker M., J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 849(1-2), 2006
PMID: 17055787
A singular enzymatic megacomplex from Bacillus subtilis.
Straight PD, Fischbach MA, Walsh CT, Rudner DZ, Kolter R., Proc. Natl. Acad. Sci. U.S.A. 104(1), 2006
PMID: 17190806

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 25896738
PubMed | Europe PMC

Suchen in

Google Scholar