New FeFe-hydrogenase genes identified in a metagenomic fosmid library from a municipal wastewater treatment plant as revealed by high-throughput sequencing

Tomazetto G, Wibberg D, Schlüter A, Oliveira VM (2015)
Research in Microbiology 166(1): 9-19.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Tomazetto, Geicecler; Wibberg, DanielUniBi; Schlüter, AndreasUniBi ; Oliveira, Valeria M.
Abstract / Bemerkung
A fosmid metagenomic library was constructed with total community DNA obtained from a municipal wastewater treatment plant (MWWTP), with the aim of identifying new FeFe-hydrogenase genes encoding the enzymes most important for hydrogen metabolism. The dataset generated by pyrosequencing of a fosmid library was mined to identify environmental gene tags (EGTs) assigned to FeFe-hydrogenase. The majority of EGTs representing FeFe-hydrogenase genes were affiliated with the class Clostridia, suggesting that this group is the main hydrogen producer in the MWWTP analyzed. Based on assembled sequences, three FeFe-hydrogenase genes were predicted based on detection of the L2 motif (MPCxxKicxE) in the encoded gene product, confirming true FeFe-hydrogenase sequences. These sequences were used to design specific primers to detect fosmids encoding FeFe-hydrogenase genes predicted from the dataset. Three identified fosmids were completely sequenced. The cloned genomic fragments within these fosmids are closely related to members of the Spirochaetaceae, Bacteroidales and Firmicutes, and their FeFe-hydrogenase sequences are characterized by the structure type M3, which is common to clostridial enzymes. FeFe-hydrogenase sequences found in this study represent hitherto undetected sequences, indicating the high genetic diversity regarding these enzymes in MWWTP. Results suggest that MWWTP have to be considered as reservoirs for new FeFe-hydrogenase genes. (C) 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Stichworte
Metagenomics; Fosmid library; Anaerobic digestion; [FeFe]-hydrogenase; Microbial community
Erscheinungsjahr
2015
Zeitschriftentitel
Research in Microbiology
Band
166
Ausgabe
1
Seite(n)
9-19
ISSN
0923-2508
Page URI
https://pub.uni-bielefeld.de/record/2731292

Zitieren

Tomazetto G, Wibberg D, Schlüter A, Oliveira VM. New FeFe-hydrogenase genes identified in a metagenomic fosmid library from a municipal wastewater treatment plant as revealed by high-throughput sequencing. Research in Microbiology. 2015;166(1):9-19.
Tomazetto, G., Wibberg, D., Schlüter, A., & Oliveira, V. M. (2015). New FeFe-hydrogenase genes identified in a metagenomic fosmid library from a municipal wastewater treatment plant as revealed by high-throughput sequencing. Research in Microbiology, 166(1), 9-19. doi:10.1016/j.resmic.2014.11.002
Tomazetto, Geicecler, Wibberg, Daniel, Schlüter, Andreas, and Oliveira, Valeria M. 2015. “New FeFe-hydrogenase genes identified in a metagenomic fosmid library from a municipal wastewater treatment plant as revealed by high-throughput sequencing”. Research in Microbiology 166 (1): 9-19.
Tomazetto, G., Wibberg, D., Schlüter, A., and Oliveira, V. M. (2015). New FeFe-hydrogenase genes identified in a metagenomic fosmid library from a municipal wastewater treatment plant as revealed by high-throughput sequencing. Research in Microbiology 166, 9-19.
Tomazetto, G., et al., 2015. New FeFe-hydrogenase genes identified in a metagenomic fosmid library from a municipal wastewater treatment plant as revealed by high-throughput sequencing. Research in Microbiology, 166(1), p 9-19.
G. Tomazetto, et al., “New FeFe-hydrogenase genes identified in a metagenomic fosmid library from a municipal wastewater treatment plant as revealed by high-throughput sequencing”, Research in Microbiology, vol. 166, 2015, pp. 9-19.
Tomazetto, G., Wibberg, D., Schlüter, A., Oliveira, V.M.: New FeFe-hydrogenase genes identified in a metagenomic fosmid library from a municipal wastewater treatment plant as revealed by high-throughput sequencing. Research in Microbiology. 166, 9-19 (2015).
Tomazetto, Geicecler, Wibberg, Daniel, Schlüter, Andreas, and Oliveira, Valeria M. “New FeFe-hydrogenase genes identified in a metagenomic fosmid library from a municipal wastewater treatment plant as revealed by high-throughput sequencing”. Research in Microbiology 166.1 (2015): 9-19.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A novel alkaline surfactant-stable keratinase with superior feather-degrading potential based on library screening strategy.
Su C, Gong JS, Zhang RX, Tao LY, Dou WF, Zhang DD, Li H, Lu ZM, Xu ZH, Shi JS., Int J Biol Macromol 95(), 2017
PMID: 27864058
Bioaugmentation: An Emerging Strategy of Industrial Wastewater Treatment for Reuse and Discharge.
Nzila A, Razzak SA, Zhu J., Int J Environ Res Public Health 13(9), 2016
PMID: 27571089
Metagenomics reveals the high polycyclic aromatic hydrocarbon-degradation potential of abundant uncultured bacteria from chronically polluted subantarctic and temperate coastal marine environments.
Loviso CL, Lozada M, Guibert LM, Musumeci MA, Sarango Cardenas S, Kuin RV, Marcos MS, Dionisi HM., J Appl Microbiol 119(2), 2015
PMID: 25968322

38 References

Daten bereitgestellt von Europe PubMed Central.

Metabolic engineering in dark fermentative hydrogen production; theory and practice.
Abo-Hashesh M, Wang R, Hallenbeck PC., Bioresour. Technol. 102(18), 2011
PMID: 21470849
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
Analysis of [FeFe]-hydrogenase genes for the elucidation of a hydrogen-producing bacterial community in paddy field soil.
Baba R, Kimura M, Asakawa S, Watanabe T., FEMS Microbiol. Lett. 350(2), 2013
PMID: 24261851
The surprising diversity of clostridial hydrogenases: a comparative genomic perspective.
Calusinska M, Happe T, Joris B, Wilmotte A., Microbiology (Reading, Engl.) 156(Pt 6), 2010
PMID: 20395274
Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester.
Chouari R, Le Paslier D, Daegelen P, Ginestet P, Weissenbach J, Sghir A., Environ. Microbiol. 7(8), 2005
PMID: 16011748
Hydrogen production from agricultural waste by dark fermentation: a review
Guo, Int J Hydrogen Energy 35(), 2010
MEGAN analysis of metagenomic data.
Huson DH, Auch AF, Qi J, Schuster SC., Genome Res. 17(3), 2007
PMID: 17255551
Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing.
Jaenicke S, Ander C, Bekel T, Bisdorf R, Droge M, Gartemann KH, Junemann S, Kaiser O, Krause L, Tille F, Zakrzewski M, Puhler A, Schluter A, Goesmann A., PLoS ONE 6(1), 2011
PMID: 21297863
Hydrogenases for biological hydrogen production.
Kim DH, Kim MS., Bioresour. Technol. 102(18), 2011
PMID: 21435869
Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor.
Krause L, Diaz NN, Edwards RA, Gartemann KH, Kromeke H, Neuweger H, Puhler A, Runte KJ, Schluter A, Stoye J, Szczepanowski R, Tauch A, Goesmann A., J. Biotechnol. 136(1-2), 2008
PMID: 18611419
Clustal W and Clustal X version 2.0.
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG., Bioinformatics 23(21), 2007
PMID: 17846036
Biological hydrogen production: prospects and challenges.
Lee HS, Vermaas WF, Rittmann BE., Trends Biotechnol. 28(5), 2010
PMID: 20189666
T-RFLP reveals high β-Proteobacteria diversity in microbial fuel cells enriched with domestic wastewater.
Lefebvre O, Nguyen TT, Al-Mamun A, Chang IS, Ng HY., J. Appl. Microbiol. 109(3), 2010
PMID: 20477890
Recovery, purification, and cloning of high-molecular-weight DNA from soil microorganisms.
Liles MR, Williamson LL, Rodbumrer J, Torsvik V, Goodman RM, Handelsman J., Appl. Environ. Microbiol. 74(10), 2008
PMID: 18359830
States and challenges for high-value biohythane production from waste biomass by dark fermentation technology
Liu, Bioresour Technol 135(), 2013
GenDB--an open source genome annotation system for prokaryote genomes.
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A., Nucleic Acids Res. 31(8), 2003
PMID: 12682369
[FeFe] hydrogenases and their evolution: a genomic perspective.
Meyer J., Cell. Mol. Life Sci. 64(9), 2007
PMID: 17353991
Characterization of microbial biofilms in a thermophilic biogas system by high-throughput metagenome sequencing
Rademacher, FEMS Microbiol Ecol 79(), 2011
Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge.
Riviere D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A., ISME J 3(6), 2009
PMID: 19242531
Molecular diversity of a North Carolina wastewater treatment plant as revealed by pyrosequencing.
Sanapareddy N, Hamp TJ, Gonzalez LC, Hilger HA, Fodor AA, Clinton SM., Appl. Environ. Microbiol. 75(6), 2008
PMID: 19114525
The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology.
Schluter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann KH, Krahn I, Krause L, Kromeke H, Kruse O, Mussgnug JH, Neuweger H, Niehaus K, Puhler A, Runte KJ, Szczepanowski R, Tauch A, Tilker A, Viehover P, Goesmann A., J. Biotechnol. 136(1-2), 2008
PMID: 18597880
The genome of Syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production.
Sieber JR, Sims DR, Han C, Kim E, Lykidis A, Lapidus AL, McDonnald E, Rohlin L, Culley DE, Gunsalus R, McInerney MJ., Environ. Microbiol. 12(8), 2010
PMID: 21966920
Monitoring the bacterial community dynamics in a petroleum refinery wastewater membrane bioreactor fed with a high phenolic load.
Silva CC, Viero AF, Dias AC, Andreote FD, Jesus EC, De Paula SO, Torres AP, Santiago VM, Oliveira VM., J. Microbiol. Biotechnol. 20(1), 2010
PMID: 20134229
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S., Mol. Biol. Evol. 28(10), 2011
PMID: 21546353
Oliveira VM investigation of the FeFe-hydrogenase gene diversity combined with phylogenetic microbial community analysis of an anaerobic domestic sewage sludge
Tomazetto, W J Microbiol Biotechnol 29(), 2013
Classification and phylogeny of hydrogenases.
Vignais PM, Billoud B, Meyer J., FEMS Microbiol. Rev. 25(4), 2001
PMID: 11524134
Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.
Wang Q, Garrity GM, Tiedje JM, Cole JR., Appl. Environ. Microbiol. 73(16), 2007
PMID: 17586664
Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing.
Wirth R, Kovacs E, Maroti G, Bagi Z, Rakhely G, Kovacs KL., Biotechnol Biofuels 5(), 2012
PMID: 22673110
Metagenomic analysis of sludge from full-scale anaerobic digesters operated in municipal wastewater treatment plants.
Yang Y, Yu K, Xia Y, Lau FT, Tang DT, Fung WC, Fang HH, Zhang T., Appl. Microbiol. Biotechnol. 98(12), 2014
PMID: 24633414
MetaSAMS-A novel software platform for taxonomic classification, functional annotation and comparative analysis of metagenome datasets
Zakrzewski, J Biotechnol 167(), 2012
Comprehensive phylogenetic diversity of [FeFe]-hydrogenase genes in termite gut microbiota.
Zheng H, Bodington D, Zhang C, Miyanaga K, Tanji Y, Hongoh Y, Xing XH., Microbes Environ. 28(4), 2013
PMID: 24240187
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25446611
PubMed | Europe PMC

Suchen in

Google Scholar