Learning to classify organic and conventional wheat - a machine-learning driven approach using the MeltDB 2.0 metabolomics analysis platform

Kessler N, Bonte A, Albaum S, Mäder P, Messmer M, Goesmann A, Niehaus K, Langenkämper G, Nattkemper TW (2015)
Frontiers in Bioinformatics and Computational Biology 3: 35.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Kessler, NikolasUniBi; Bonte, Anja; Albaum, StefanUniBi ; Mäder, Paul; Messmer, Monika; Goesmann, Alexander; Niehaus, KarstenUniBi; Langenkämper, Georg; Nattkemper, Tim WilhelmUniBi
Abstract / Bemerkung
We present results of our machine learning approach to the problem of classifying GC-MS data originating from wheat grains of different farming systems. The aim is to investigate the potential of learning algorithms to classify GC-MS data to be either from conventionally grown or from organically grown samples and considering different cultivars. The motivation of our work is rather obvious on the background of nowadays increased demand for organic food in post-industrialized societies and the necessity to prove organic food authenticity. The background of our data set is given by up to eleven wheat cultivars that have been cultivated in both farming systems, organic and conventional, throughout three years. More than 300 GC-MS measurements were recorded and subsequently processed and analyzed in the MeltDB 2.0 metabolomics analysis platform, being briefly outlined in this paper. We further describe how unsupervised (t-SNE, PCA) and supervised (RF, SVM) methods can be applied for sample visualization and classification. Our results clearly show that years have most and wheat cultivars have second-most influence on the metabolic composition of a sample. We can also show, that for a given year and cultivar, organic and conventional cultivation can be distinguished by machine-learning algorithms.
Stichworte
Metabolome informatics; Organic farming; statistics; computational metabolomics; Biodata mining; Metabolomics
Erscheinungsjahr
2015
Zeitschriftentitel
Frontiers in Bioinformatics and Computational Biology
Band
3
Art.-Nr.
35
eISSN
2296-4185
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2722138

Zitieren

Kessler N, Bonte A, Albaum S, et al. Learning to classify organic and conventional wheat - a machine-learning driven approach using the MeltDB 2.0 metabolomics analysis platform. Frontiers in Bioinformatics and Computational Biology. 2015;3: 35.
Kessler, N., Bonte, A., Albaum, S., Mäder, P., Messmer, M., Goesmann, A., Niehaus, K., et al. (2015). Learning to classify organic and conventional wheat - a machine-learning driven approach using the MeltDB 2.0 metabolomics analysis platform. Frontiers in Bioinformatics and Computational Biology, 3, 35. doi:10.3389/fbioe.2015.00035
Kessler, Nikolas, Bonte, Anja, Albaum, Stefan, Mäder, Paul, Messmer, Monika, Goesmann, Alexander, Niehaus, Karsten, Langenkämper, Georg, and Nattkemper, Tim Wilhelm. 2015. “Learning to classify organic and conventional wheat - a machine-learning driven approach using the MeltDB 2.0 metabolomics analysis platform”. Frontiers in Bioinformatics and Computational Biology 3: 35.
Kessler, N., Bonte, A., Albaum, S., Mäder, P., Messmer, M., Goesmann, A., Niehaus, K., Langenkämper, G., and Nattkemper, T. W. (2015). Learning to classify organic and conventional wheat - a machine-learning driven approach using the MeltDB 2.0 metabolomics analysis platform. Frontiers in Bioinformatics and Computational Biology 3:35.
Kessler, N., et al., 2015. Learning to classify organic and conventional wheat - a machine-learning driven approach using the MeltDB 2.0 metabolomics analysis platform. Frontiers in Bioinformatics and Computational Biology, 3: 35.
N. Kessler, et al., “Learning to classify organic and conventional wheat - a machine-learning driven approach using the MeltDB 2.0 metabolomics analysis platform”, Frontiers in Bioinformatics and Computational Biology, vol. 3, 2015, : 35.
Kessler, N., Bonte, A., Albaum, S., Mäder, P., Messmer, M., Goesmann, A., Niehaus, K., Langenkämper, G., Nattkemper, T.W.: Learning to classify organic and conventional wheat - a machine-learning driven approach using the MeltDB 2.0 metabolomics analysis platform. Frontiers in Bioinformatics and Computational Biology. 3, : 35 (2015).
Kessler, Nikolas, Bonte, Anja, Albaum, Stefan, Mäder, Paul, Messmer, Monika, Goesmann, Alexander, Niehaus, Karsten, Langenkämper, Georg, and Nattkemper, Tim Wilhelm. “Learning to classify organic and conventional wheat - a machine-learning driven approach using the MeltDB 2.0 metabolomics analysis platform”. Frontiers in Bioinformatics and Computational Biology 3 (2015): 35.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:30Z
MD5 Prüfsumme
ec2652ea7da8654f0e316b375e4a5d8d


Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25853128
PubMed | Europe PMC

Suchen in

Google Scholar