The Sinorhizobium fredii HH103 genome: a comparative analysis with S. fredii strains differing in their symbiotic behaviour with soybean

Vinardell JM, Acosta-Jurado S, Göttfert M, Zehner S, Becker A, Baena-Ropero I, Blom J, Crespo-Rivas JC, Goesmann A, Jaenicke S, Krol E, et al. (2015)
Molecular Plant-Microbe Interactions 28(7): 811-824.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Vinardell, JM; Acosta-Jurado, S; Göttfert, M; Zehner, S; Becker, A; Baena-Ropero, I; Blom, J; Crespo-Rivas, JC; Goesmann, A; Jaenicke, SebastianUniBi; Krol, E; McIntosh, M
Alle
Abstract / Bemerkung
Sinorhizobium fredii HH103 is a fast-growing rhizobial strain infecting a broad range of legumes including both American and Asiatic soybeans. In this work we present the sequencing and annotation of the HH103 genome (7.25 Mb), consisting of one chromosome and six plasmids and representing the structurally most complex sinorhizobial genome sequenced so far. Comparative genomic analyses of S. fredii HH103 with strains USDA257 and NGR234 showed that the core genome of these three strains contains 4212 genes (61.7% of the HH103 genes). Synteny plot analysis revealed that the much larger chromosome of USDA257 (6.48 Mb) is co-linear to the HH103 (4.3 Mb) and NGR324 chromosomes (3.9 Mb). An additional region of the USDA257 chromosome of about 2 Mb displays similarity to plasmid pSfHH103e. Remarkable differences exist between HH103 and NGR234 concerning nod genes, flavonoid effect on surface polysaccharide production, and quorum-sensing systems. Furthermore a number of protein secretion systems have been found. Two genes coding for putative type III-secreted effectors not previously described in S. fredii, nopI and gunA, have been located on the HH103 genome. These differences could be important to understand the different symbiotic behaviour of S. fredii strains HH103, USDA257, and NGR234 with soybean.
Erscheinungsjahr
2015
Zeitschriftentitel
Molecular Plant-Microbe Interactions
Band
28
Ausgabe
7
Seite(n)
811-824
ISSN
0894-0282
Page URI
https://pub.uni-bielefeld.de/record/2719679

Zitieren

Vinardell JM, Acosta-Jurado S, Göttfert M, et al. The Sinorhizobium fredii HH103 genome: a comparative analysis with S. fredii strains differing in their symbiotic behaviour with soybean. Molecular Plant-Microbe Interactions. 2015;28(7):811-824.
Vinardell, J. M., Acosta-Jurado, S., Göttfert, M., Zehner, S., Becker, A., Baena-Ropero, I., Blom, J., et al. (2015). The Sinorhizobium fredii HH103 genome: a comparative analysis with S. fredii strains differing in their symbiotic behaviour with soybean. Molecular Plant-Microbe Interactions, 28(7), 811-824. doi:10.1094/mpmi-12-14-0397-fi
Vinardell, JM, Acosta-Jurado, S, Göttfert, M, Zehner, S, Becker, A, Baena-Ropero, I, Blom, J, et al. 2015. “The Sinorhizobium fredii HH103 genome: a comparative analysis with S. fredii strains differing in their symbiotic behaviour with soybean”. Molecular Plant-Microbe Interactions 28 (7): 811-824.
Vinardell, J. M., Acosta-Jurado, S., Göttfert, M., Zehner, S., Becker, A., Baena-Ropero, I., Blom, J., Crespo-Rivas, J. C., Goesmann, A., Jaenicke, S., et al. (2015). The Sinorhizobium fredii HH103 genome: a comparative analysis with S. fredii strains differing in their symbiotic behaviour with soybean. Molecular Plant-Microbe Interactions 28, 811-824.
Vinardell, J.M., et al., 2015. The Sinorhizobium fredii HH103 genome: a comparative analysis with S. fredii strains differing in their symbiotic behaviour with soybean. Molecular Plant-Microbe Interactions, 28(7), p 811-824.
J.M. Vinardell, et al., “The Sinorhizobium fredii HH103 genome: a comparative analysis with S. fredii strains differing in their symbiotic behaviour with soybean”, Molecular Plant-Microbe Interactions, vol. 28, 2015, pp. 811-824.
Vinardell, J.M., Acosta-Jurado, S., Göttfert, M., Zehner, S., Becker, A., Baena-Ropero, I., Blom, J., Crespo-Rivas, J.C., Goesmann, A., Jaenicke, S., Krol, E., McIntosh, M., Margaret, I., Pérez-Montaño, F., Schneiker-Bekel, S., Serrania, J., Szczepanowski, R., Buendia-Claveria, A.M., Lloret, J., Bonilla, I., Pühler, A., Ruiz-Sainz, J.E., Weidner, S.: The Sinorhizobium fredii HH103 genome: a comparative analysis with S. fredii strains differing in their symbiotic behaviour with soybean. Molecular Plant-Microbe Interactions. 28, 811-824 (2015).
Vinardell, JM, Acosta-Jurado, S, Göttfert, M, Zehner, S, Becker, A, Baena-Ropero, I, Blom, J, Crespo-Rivas, JC, Goesmann, A, Jaenicke, Sebastian, Krol, E, McIntosh, M, Margaret, I, Pérez-Montaño, F, Schneiker-Bekel, Susanne, Serrania, J, Szczepanowski, R, Buendia-Claveria, AM, Lloret, J, Bonilla, I, Pühler, Alfred, Ruiz-Sainz, JE, and Weidner, Stefan. “The Sinorhizobium fredii HH103 genome: a comparative analysis with S. fredii strains differing in their symbiotic behaviour with soybean”. Molecular Plant-Microbe Interactions 28.7 (2015): 811-824.

19 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Sinorhizobium fredii HH103 RirA Is Required for Oxidative Stress Resistance and Efficient Symbiosis with Soybean.
Crespo-Rivas JC, Navarro-Gómez P, Alias-Villegas C, Shi J, Zhen T, Niu Y, Cuéllar V, Moreno J, Cubo T, Vinardell JM, Ruiz-Sainz JE, Acosta-Jurado S, Soto MJ., Int J Mol Sci 20(3), 2019
PMID: 30759803
Adaptive evolution of rhizobial symbiotic compatibility mediated by co-evolved insertion sequences.
Zhao R, Liu LX, Zhang YZ, Jiao J, Cui WJ, Zhang B, Wang XL, Li ML, Chen Y, Xiong ZQ, Chen WX, Tian CF., ISME J 12(1), 2018
PMID: 28800133
Nonspecific Symbiosis Between Sophora flavescens and Different Rhizobia.
Liu YH, Jiao YS, Liu LX, Wang D, Tian CF, Wang ET, Wang L, Chen WX, Wu SY, Guo BL, Guan ZG, Poinsot V, Chen WF., Mol Plant Microbe Interact 31(2), 2018
PMID: 29173048
Characterization of a novel MIIA domain-containing protein (MdcE) in Bradyrhizobium spp.
Durán D, Imperial J, Palacios J, Ruiz-Argüeso T, Göttfert M, Zehner S, Rey L., FEMS Microbiol Lett 365(5), 2018
PMID: 29281013
Coordinated regulation of core and accessory genes in the multipartite genome of Sinorhizobium fredii.
Jiao J, Ni M, Zhang B, Zhang Z, Young JPW, Chan TF, Chen WX, Lam HM, Tian CF., PLoS Genet 14(5), 2018
PMID: 29795552
Identification of Soybean Genes Whose Expression is Affected by the Ensifer fredii HH103 Effector Protein NopP.
Wang J, Wang J, Liu C, Ma C, Li C, Zhang Y, Qi Z, Zhu R, Shi Y, Zou J, Li Q, Zhu J, Wen Y, Sun Z, Liu H, Jiang H, Yin Z, Hu Z, Chen Q, Wu X, Xin D., Int J Mol Sci 19(11), 2018
PMID: 30400148
Sinorhizobium fredii Strains HH103 and NGR234 Form Nitrogen Fixing Nodules With Diverse Wild Soybeans (Glycine soja) From Central China but Are Ineffective on Northern China Accessions.
Temprano-Vera F, Rodríguez-Navarro DN, Acosta-Jurado S, Perret X, Fossou RK, Navarro-Gómez P, Zhen T, Yu D, An Q, Buendía-Clavería AM, Moreno J, López-Baena FJ, Ruiz-Sainz JE, Vinardell JM., Front Microbiol 9(), 2018
PMID: 30519234
The Sinorhizobium (Ensifer) fredii HH103 Nodulation Outer Protein NopI Is a Determinant for Efficient Nodulation of Soybean and Cowpea Plants.
Jiménez-Guerrero I, Pérez-Montaño F, Medina C, Ollero FJ, López-Baena FJ., Appl Environ Microbiol 83(5), 2017
PMID: 27986730
Transcriptomic Studies of the Effect of nod Gene-Inducing Molecules in Rhizobia: Different Weapons, One Purpose.
Jiménez-Guerrero I, Acosta-Jurado S, Del Cerro P, Navarro-Gómez P, López-Baena FJ, Ollero FJ, Vinardell JM, Pérez-Montaño F., Genes (Basel) 9(1), 2017
PMID: 29267254
Sinorhizobium fredii HH103 bacteroids are not terminally differentiated and show altered O-antigen in nodules of the Inverted Repeat-Lacking Clade legume Glycyrrhiza uralensis.
Crespo-Rivas JC, Guefrachi I, Mok KC, Villaécija-Aguilar JA, Acosta-Jurado S, Pierre O, Ruiz-Sainz JE, Taga ME, Mergaert P, Vinardell JM., Environ Microbiol 18(8), 2016
PMID: 26521863
Bacterial Molecular Signals in the Sinorhizobium fredii-Soybean Symbiosis.
López-Baena FJ, Ruiz-Sainz JE, Rodríguez-Carvajal MA, Vinardell JM., Int J Mol Sci 17(5), 2016
PMID: 27213334
Exopolysaccharide Production by Sinorhizobium fredii HH103 Is Repressed by Genistein in a NodD1-Dependent Manner.
Acosta-Jurado S, Navarro-Gómez P, Murdoch Pdel S, Crespo-Rivas JC, Jie S, Cuesta-Berrio L, Ruiz-Sainz JE, Rodríguez-Carvajal MÁ, Vinardell JM., PLoS One 11(8), 2016
PMID: 27486751
A transcriptomic analysis of the effect of genistein on Sinorhizobium fredii HH103 reveals novel rhizobial genes putatively involved in symbiosis.
Pérez-Montaño F, Jiménez-Guerrero I, Acosta-Jurado S, Navarro-Gómez P, Ollero FJ, Ruiz-Sainz JE, López-Baena FJ, Vinardell JM., Sci Rep 6(), 2016
PMID: 27539649
Sinorhizobium fredii HH103 Invades Lotus burttii by Crack Entry in a Nod Factor-and Surface Polysaccharide-Dependent Manner.
Acosta-Jurado S, Rodríguez-Navarro DN, Kawaharada Y, Perea JF, Gil-Serrano A, Jin H, An Q, Rodríguez-Carvajal MA, Andersen SU, Sandal N, Stougaard J, Vinardell JM, Ruiz-Sainz JE., Mol Plant Microbe Interact 29(12), 2016
PMID: 27827003
NopC Is a Rhizobium-Specific Type 3 Secretion System Effector Secreted by Sinorhizobium (Ensifer) fredii HH103.
Jiménez-Guerrero I, Pérez-Montaño F, Medina C, Ollero FJ, López-Baena FJ., PLoS One 10(11), 2015
PMID: 26569401

90 References

Daten bereitgestellt von Europe PubMed Central.

Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
Synthesis of the flavonoid-induced lipopolysaccharide of Rhizobium Sp. strain NGR234 requires rhamnosyl transferases encoded by genes rgpF and wbgA.
Ardissone S, Noel KD, Klement M, Broughton WJ, Deakin WJ., Mol. Plant Microbe Interact. 24(12), 2011
PMID: 22066901
Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid.
Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn ML, Kalman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Yeh KC, Davis RW, Federspiel NA, Long SR., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481432
Structures of nodulation factors from the nitrogen-fixing soybean symbiont Rhizobium fredii USDA257.
Bec-Ferte MP, Krishnan HB, Prome D, Savagnac A, Pueppke SG, Prome JC., Biochemistry 33(39), 1994
PMID: 7918395
Regulation of succinoglycan and galactoglucan biosynthesis in Sinorhizobium meliloti.
Becker A, Ruberg S, Baumgarth B, Bertram-Drogatz PA, Quester I, Puhler A., J. Mol. Microbiol. Biotechnol. 4(3), 2002
PMID: 11931545
R factor transfer in Rhizobium leguminosarum.
Beringer JE., J. Gen. Microbiol. 84(1), 1974
PMID: 4612098
The genetics of symbiotic nitrogen fixation: comparative genomics of 14 rhizobia strains by resolution of protein clusters.
Black M, Moolhuijzen P, Chapman B, Barrero R, Howieson J, Hungria M, Bellgard M., Genes (Basel) 3(1), 2012
PMID: 24704847
EDGAR: a software framework for the comparative analysis of prokaryotic genomes.
Blom J, Albaum SP, Doppmeier D, Puhler A, Vorholter FJ, Zakrzewski M, Goesmann A., BMC Bioinformatics 10(), 2009
PMID: 19457249
A purL mutant of Sinorhizobium fredii HH103 is symbiotically defective and altered in its lipopolysaccharide.
Buendia-Claveria AM, Moussaid A, Ollero FJ, Vinardell JM, Torres A, Moreno J, Gil-Serrano AM, Rodriguez-Carvajal MA, Tejero-Mateo P, Peart JL, Brewin NJ, Ruiz-Sainz JE., Microbiology (Reading, Engl.) 149(Pt 7), 2003
PMID: 12855732
ACT: the Artemis Comparison Tool.
Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J., Bioinformatics 21(16), 2005
PMID: 15976072
Temporal expression program of quorum sensing-based transcription regulation in Sinorhizobium meliloti.
Charoenpanich P, Meyer S, Becker A, McIntosh M., J. Bacteriol. 195(14), 2013
PMID: 23687265
Quorum sensing restrains growth and is rapidly inactivated during domestication of Sinorhizobium meliloti.
Charoenpanich P, Soto MJ, Becker A, McIntosh M., Environ Microbiol Rep 7(2), 2015
PMID: 25534533
A Sinorhizobium meliloti minE mutant has an altered morphology and exhibits defects in legume symbiosis.
Cheng J, Sibley CD, Zaheer R, Finan TM., Microbiology (Reading, Engl.) 153(Pt 2), 2007
PMID: 17259609
A pyrF auxotrophic mutant of Sinorhizobium fredii HH103 impaired in its symbiotic interactions with soybean and other legumes.
Crespo-Rivas JC, Margaret I, Perez-Montano F, Lopez-Baena FJ, Vinardell JM, Ollero FJ, Moreno J, Ruiz-Sainz JE, Buendia-Claveria AM., Int. Microbiol. 10(3), 2007
PMID: 18075998
Sinorhizobium fredii HH103 cgs mutants are unable to nodulate determinate- and indeterminate nodule-forming legumes and overproduce an altered EPS.
Crespo-Rivas JC, Margaret I, Hidalgo A, Buendia-Claveria AM, Ollero FJ, Lopez-Baena FJ, del Socorro Murdoch P, Rodriguez-Carvajal MA, Soria-Diaz ME, Reguera M, Lloret J, Sumpton DP, Mosely JA, Thomas-Oates JE, van Brussel AA, Gil-Serrano A, Vinardell JM, Ruiz-Sainz JE., Mol. Plant Microbe Interact. 22(5), 2009
PMID: 19348575
Inactivation of the Sinorhizobium fredii HH103 rhcJ gene abolishes nodulation outer proteins (Nops) secretion and decreases the symbiotic capacity with soybean.
de Lyra Mdo C, Lopez-Baena FJ, Madinabeitia N, Vinardell JM, Espuny Mdel R, Cubo MT, Belloguin RA, Ruiz-Sainz JE, Ollero FJ., Int. Microbiol. 9(2), 2006
PMID: 16835843
Symbiotic use of pathogenic strategies: rhizobial protein secretion systems.
Deakin WJ, Broughton WJ., Nat. Rev. Microbiol. 7(4), 2009
PMID: 19270720
Type I secretion in gram-negative bacteria.
Delepelaire P., Biochim. Biophys. Acta 1694(1-3), 2004
PMID: 15546664
Examination of prokaryotic multipartite genome evolution through experimental genome reduction.
diCenzo GC, MacLean AM, Milunovic B, Golding GB, Finan TM., PLoS Genet. 10(10), 2014
PMID: 25340565
The composite genome of the legume symbiont Sinorhizobium meliloti.
Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J., Science 293(5530), 2001
PMID: 11474104
Structural comparison of the transport units of type V secretion systems.
Gawarzewski I, Smits SH, Schmitt L, Jose J., Biol. Chem. 394(11), 2013
PMID: 23929883
Structural determination of the lipo-chitin oligosaccharide nodulation signals produced by Rhizobium fredii HH103.
Gil-Serrano AM, Franco-Rodriguez G, Tejero-Mateo P, Thomas-Oates J, Spaink HP, Ruiz-Sainz JE, Megias M, Lamrabet Y., Carbohydr. Res. 303(4), 1997
PMID: 9403989
Consed: a graphical tool for sequence finishing.
Gordon D, Abajian C, Green P., Genome Res. 8(3), 1998
PMID: 9521923
Automated finishing with autofinish.
Gordon D, Desmarais C, Green P., Genome Res. 11(4), 2001
PMID: 11282977
Introducing the bacterial 'chromid': not a chromosome, not a plasmid.
Harrison PW, Lower RP, Kim NK, Young JP., Trends Microbiol. 18(4), 2010
PMID: 20080407
Insights into the completely annotated genome of Lactobacillus buchneri CD034, a strain isolated from stable grass silage.
Heinl S, Wibberg D, Eikmeyer F, Szczepanowski R, Blom J, Linke B, Goesmann A, Grabherr R, Schwab H, Puhler A, Schluter A., J. Biotechnol. 161(2), 2012
PMID: 22465289
The rkpU gene of Sinorhizobium fredii HH103 is required for bacterial K-antigen polysaccharide production and for efficient nodulation with soybean but not with cowpea.
Hidalgo A, Margaret I, Crespo-Rivas JC, Parada M, Murdoch Pdel S, Lopez A, Buendia-Claveria AM, Moreno J, Albareda M, Gil-Serrano AM, Rodriguez-Carvajal MA, Palacios JM, Ruiz-Sainz JE, Vinardell JM., Microbiology (Reading, Engl.) 156(Pt 11), 2010
PMID: 20688828
Involvement of nodS in N-methylation and nodU in 6-O-carbamoylation of Rhizobium sp. NGR234 nod factors.
Jabbouri S, Fellay R, Talmont F, Kamalaprija P, Burger U, Relic B, Prome JC, Broughton WJ., J. Biol. Chem. 270(39), 1995
PMID: 7559434
nolO and noeI (HsnIII) of Rhizobium sp. NGR234 are involved in 3-O-carbamoylation and 2-O-methylation of Nod factors.
Jabbouri S, Relic B, Hanin M, Kamalaprija P, Burger U, Prome D, Prome JC, Broughton WJ., J. Biol. Chem. 273(20), 1998
PMID: 9575146
Data, information, knowledge and principle: back to metabolism in KEGG.
Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M., Nucleic Acids Res. 42(Database issue), 2013
PMID: 24214961
Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110.
Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S., DNA Res. 9(6), 2002
PMID: 12597275
Mutualistic co-evolution of type III effector genes in Sinorhizobium fredii and Bradyrhizobium japonicum.
Kimbrel JA, Thomas WJ, Jiang Y, Creason AL, Thireault CA, Sachs JL, Chang JH., PLoS Pathog. 9(2), 2013
PMID: 23468637
Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum.
Krause A, Doerfel A, Gottfert M., Mol. Plant Microbe Interact. 15(12), 2002
PMID: 12481995
Involvement of multiple loci in quorum quenching of autoinducer I molecules in the nitrogen-fixing symbiont Rhizobium (Sinorhizobium) sp. strain NGR234.
Krysciak D, Schmeisser C, Preuss S, Riethausen J, Quitschau M, Grond S, Streit WR., Appl. Environ. Microbiol. 77(15), 2011
PMID: 21642401
RNA sequencing analysis of the broad-host-range strain Sinorhizobium fredii NGR234 identifies a large set of genes linked to quorum sensing-dependent regulation in the background of a traI and ngrI deletion mutant.
Krysciak D, Grote J, Rodriguez Orbegoso M, Utpatel C, Forstner KU, Li L, Schmeisser C, Krishnan HB, Streit WR., Appl. Environ. Microbiol. 80(18), 2014
PMID: 25002423
Mutation in GDP-fucose synthesis genes of Sinorhizobium fredii alters Nod factors and significantly decreases competitiveness to nodulate soybeans.
Lamrabet Y, Bellogin RA, Cubo T, Espuny R, Gil A, Krishnan HB, Megias M, Ollero FJ, Pueppke SG, Ruiz-Sainz JE, Spaink HP, Tejero-Mateo P, Thomas-Oates J, Vinardell JM., Mol. Plant Microbe Interact. 12(3), 1999
PMID: 10065558
SMART 7: recent updates to the protein domain annotation resource.
Letunic I, Doerks T, Bork P., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22053084
RTX proteins: a highly diverse family secreted by a common mechanism.
Linhartova I, Bumba L, Masin J, Basler M, Osicka R, Kamanova J, Prochazkova K, Adkins I, Hejnova-Holubova J, Sadilkova L, Morova J, Sebo P., FEMS Microbiol. Rev. 34(6), 2010
PMID: 20528947
Regulation and symbiotic significance of nodulation outer proteins secretion in Sinorhizobium fredii HH103.
Lopez-Baena FJ, Vinardell JM, Perez-Montano F, Crespo-Rivas JC, Bellogin RA, Espuny Mdel R, Ollero FJ., Microbiology (Reading, Engl.) 154(Pt 6), 2008
PMID: 18524937

AUTHOR UNKNOWN, 0
Sinorhizobium fredii HH103 has a truncated nolO gene due to a -1 frameshift mutation that is conserved among other geographically distant S. fredii strains.
Madinabeitia N, Bellogin RA, Buendia-Claveria AM, Camacho M, Cubo T, Espuny MR, Gil-Serrano AM, Lyra MC, Moussaid A, Ollero FJ, Soria-Diaz ME, Vinardell JM, Zeng J, Ruiz-Sainz JE., Mol. Plant Microbe Interact. 15(2), 2002
PMID: 11878319
Symbiotic properties and first analyses of the genomic sequence of the fast growing model strain Sinorhizobium fredii HH103 nodulating soybean.
Margaret I, Becker A, Blom J, Bonilla I, Goesmann A, Gottfert M, Lloret J, Mittard-Runte V, Ruckert C, Ruiz-Sainz JE, Vinardell JM, Weidner S., J. Biotechnol. 155(1), 2011
PMID: 21458507
Sinorhizobium fredii HH103 rkp-3 genes are required for K-antigen polysaccharide biosynthesis, affect lipopolysaccharide structure and are essential for infection of legumes forming determinate nodules.
Margaret I, Crespo-Rivas JC, Acosta-Jurado S, Buendia-Claveria AM, Cubo MT, Gil-Serrano A, Moreno J, Murdoch PS, Rodriguez-Carvajal MA, Rodriguez-Navarro DN, Ruiz-Sainz JE, Sanjuan J, Soto MJ, Vinardell JM., Mol. Plant Microbe Interact. 25(6), 2012
PMID: 22397406
The Sinorhizobium fredii HH103 lipopolysaccharide is not only relevant at early soybean nodulation stages but also for symbiosome stability in mature nodules.
Margaret I, Lucas MM, Acosta-Jurado S, Buendia-Claveria AM, Fedorova E, Hidalgo A, Rodriguez-Carvajal MA, Rodriguez-Navarro DN, Ruiz-Sainz JE, Vinardell JM., PLoS ONE 8(10), 2013
PMID: 24098345
Sinorhizobium fredii HH103 does not strictly require KPS and/or EPS to nodulate Glycyrrhiza uralensis, an indeterminate nodule-forming legume.
Margaret-Oliver I, Lei W, Parada M, Rodriguez-Carvajal MA, Crespo-Rivas JC, Hidalgo A, Gil-Serrano A, Moreno J, Rodriguez-Navarro DN, Buendia-Claveria A, Ollero J, Ruiz-Sainz JE, Vinardell JM., Arch. Microbiol. 194(2), 2011
PMID: 21761170
Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes?
Masson-Boivin C, Giraud E, Perret X, Batut J., Trends Microbiol. 17(10), 2009
PMID: 19766492
GenDB--an open source genome annotation system for prokaryote genomes.
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A., Nucleic Acids Res. 31(8), 2003
PMID: 12682369
Genetic organization and functional analysis of the type III secretion system of Bradyrhizobium elkanii.
Okazaki S, Zehner S, Hempel J, Lang K, Gottfert M., FEMS Microbiol. Lett. 295(1), 2009
PMID: 19473255
Sinorhizobium fredii HH103 mutants affected in capsular polysaccharide (KPS) are impaired for nodulation with soybean and Cajanus cajan.
Parada M, Vinardell JM, Ollero FJ, Hidalgo A, Gutierrez R, Buendia-Claveria AM, Lei W, Margaret I, Lopez-Baena FJ, Gil-Serrano AM, Rodriguez-Carvajal MA, Moreno J, Ruiz-Sainz JE., Mol. Plant Microbe Interact. 19(1), 2006
PMID: 16404952
A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti.
Pellock BJ, Teplitski M, Boinay RP, Bauer WD, Walker GC., J. Bacteriol. 184(18), 2002
PMID: 12193623
High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234.
Perret X, Freiberg C, Rosenthal A, Broughton WJ, Fellay R., Mol. Microbiol. 32(2), 1999
PMID: 10231496
Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges.
Pueppke SG, Broughton WJ., Mol. Plant Microbe Interact. 12(4), 1999
PMID: 10188270
EMBOSS: the European Molecular Biology Open Software Suite.
Rice P, Longden I, Bleasby A., Trends Genet. 16(6), 2000
PMID: 10827456
NopM and NopD are rhizobial nodulation outer proteins: identification using LC-MALDI and LC-ESI with a monolithic capillary column.
Rodrigues JA, Lopez-Baena FJ, Ollero FJ, Vinardell JM, Espuny Mdel R, Bellogin RA, Ruiz-Sainz JE, Thomas JR, Sumpton D, Ault J, Thomas-Oates J., J. Proteome Res. 6(3), 2007
PMID: 17249710
Structure and biological roles of Sinorhizobium fredii HH103 exopolysaccharide.
Rodriguez-Navarro DN, Rodriguez-Carvajal MA, Acosta-Jurado S, Soto MJ, Margaret I, Crespo-Rivas JC, Sanjuan J, Temprano F, Gil-Serrano A, Ruiz-Sainz JE, Vinardell JM., PLoS ONE 9(12), 2014
PMID: 25521500

Sambrook, 1989
Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes.
Sanchez-Contreras M, Bauer WD, Gao M, Robinson JB, Allan Downie J., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 362(1483), 2007
PMID: 17360278
A 2-O-methylfucose moiety is present in the lipo-oligosaccharide nodulation signal of Bradyrhizobium japonicum.
Sanjuan J, Carlson RW, Spaink HP, Bhat UR, Barbour WM, Glushka J, Stacey G., Proc. Natl. Acad. Sci. U.S.A. 89(18), 1992
PMID: 1528893
Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems.
Schmeisser C, Liesegang H, Krysciak D, Bakkou N, Le Quere A, Wollherr A, Heinemeyer I, Morgenstern B, Pommerening-Roser A, Flores M, Palacios R, Brenner S, Gottschalk G, Schmitz RA, Broughton WJ, Perret X, Strittmatter AW, Streit WR., Appl. Environ. Microbiol. 75(12), 2009
PMID: 19376903
Complete genome sequence of the broad-host-range strain Sinorhizobium fredii USDA257.
Schuldes J, Rodriguez Orbegoso M, Schmeisser C, Krishnan HB, Daniel R, Streit WR., J. Bacteriol. 194(16), 2012
PMID: 22843606
Sequencing of high G+C microbial genomes using the ultrafast pyrosequencing technology.
Schwientek P, Szczepanowski R, Ruckert C, Stoye J, Puhler A., J. Biotechnol. 155(1), 2011
PMID: 21536083
The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110.
Schwientek P, Szczepanowski R, Ruckert C, Kalinowski J, Klein A, Selber K, Wehmeier UF, Stoye J, Puhler A., BMC Genomics 13(), 2012
PMID: 22443545

AUTHOR UNKNOWN, 0
An apigenin-induced decrease in K-antigen production by Sinorhizobium sp. NGR234 is y4gM- and nodD1-dependent.
Simsek S, Ojanen-Reuhs T, Marie C, Reuhs BL., Carbohydr. Res. 344(15), 2009
PMID: 19679303

AUTHOR UNKNOWN, 0
Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies.
Sugawara M, Epstein B, Badgley BD, Unno T, Xu L, Reese J, Gyaneshwar P, Denny R, Mudge J, Bharti AK, Farmer AD, May GD, Woodward JE, Medigue C, Vallenet D, Lajus A, Rouy Z, Martinez-Vaz B, Tiffin P, Young ND, Sadowsky MJ., Genome Biol. 14(2), 2013
PMID: 23425606
Identification of genistein-inducible and type III-secreted proteins of Bradyrhizobium japonicum.
Suss C, Hempel J, Zehner S, Krause A, Patschkowski T, Gottfert M., J. Biotechnol. 126(1), 2006
PMID: 16707185

AUTHOR UNKNOWN, 0
ISRf1, a transposable insertion sequence from Sinorhizobium fredii.
Vinardell JM, Ollero FJ, Krishnan HB, del Rosario Espuny M, Villalobo E, Pueppke SG, Ruiz-Sainz JE., Gene 204(1-2), 1997
PMID: 9434166
The effect of FITA mutations on the symbiotic properties of Sinorhizobium fredii varies in a chromosomal-background-dependent manner.
Vinardell JM, Lopez-Baena FJ, Hidalgo A, Ollero FJ, Bellogin R, del Rosario Espuny M, Temprano F, Romero F, Krishnan HB, Pueppke SG, Ruiz-Sainz JE., Arch. Microbiol. 181(2), 2003
PMID: 14689165
NolR regulates diverse symbiotic signals of Sinorhizobium fredii HH103.
Vinardell JM, Ollero FJ, Hidalgo A, Lopez-Baena FJ, Medina C, Ivanov-Vangelov K, Parada M, Madinabeitia N, Espuny Mdel R, Bellogin RA, Camacho M, Rodriguez-Navarro DN, Soria-Diaz ME, Gil-Serrano AM, Ruiz-Sainz JE., Mol. Plant Microbe Interact. 17(6), 2004
PMID: 15195950
TtsI regulates symbiotic genes in Rhizobium species NGR234 by binding to tts boxes.
Wassem R, Kobayashi H, Kambara K, Le Quere A, Walker GC, Broughton WJ, Deakin WJ., Mol. Microbiol. 68(3), 2008
PMID: 18363648
Genome sequence of the soybean symbiont Sinorhizobium fredii HH103.
Weidner S, Becker A, Bonilla I, Jaenicke S, Lloret J, Margaret I, Puhler A, Ruiz-Sainz JE, Schneiker-Bekel S, Szczepanowski R, Vinardell JM, Zehner S, Gottfert M., J. Bacteriol. 194(6), 2012
PMID: 22374952
PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes.
Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS., Bioinformatics 26(13), 2010
PMID: 20472543
Expression of the Bradyrhizobium japonicum type III secretion system in legume nodules and analysis of the associated tts box promoter.
Zehner S, Schober G, Wenzel M, Lang K, Gottfert M., Mol. Plant Microbe Interact. 21(8), 2008
PMID: 18616405
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25675256
PubMed | Europe PMC

Suchen in

Google Scholar