Carbon source dependent biosynthesis of acarviose metabolites in Actinoplanes sp SE50/110

Wendler S, Ortseifen V, Persicke M, Klein A, Neshat A, Niehaus K, Schneiker-Bekel S, Walter F, Wehmeier UF, Kalinowski J, Pühler A (2014)
Journal of Biotechnology 191: 113-120.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
In this work the biosynthesis of the type 2 diabetes mellitus therapeutic acarviosyl-maltose (acarbose) and related acarviose metabolites produced by Actinoplanes sp. SE50/110 was studied in liquid minimal medium supplemented with the defined carbon sources maltose, glucose, galactose or mixtures of maltose/glucose and maltose/galactose. Quantifying acarviosyl-maltose by HPLC and UV detection revealed that only cultures grown in maltose-containing minimal media produced acarviosyl-maltose in significant amounts. A qualitative analysis of the cytosolic and extracellular proteome for the presence of proteins from the acarbose biosynthesis gene cluster showed that these were not only synthesizedin maltose-containing media, but also in media with glucose or galactose as the sole carbon source. A LC-MS-based detection method was applied to test the hypothesis that different acarviose metabolites are produced in media with maltose, glucose or galactose. The analysis revealed that a spectrum of acarviose metabolites (acarviose with 1-4 glucose equivalent units) was formed under all tested conditions. As expected, in maltose-containing minimal media acarviosyl-maltose was produced as the major component exceeding the remaining minor components by 2-3 orders of magnitude. In minimal medium supplemented with glucose acarviosyl-glucose was the major component, while in minimal medium with galactose no major component was present. Based on the results presented, a model for the intracellular biosynthesis of major and minor acarviose metabolites was developed. (C) 2014 Elsevier B.V. All rights reserved.
Stichworte
Acarbose; Actinoplanes; Acarviose metabolite; Proteome; LC-MS
Erscheinungsjahr
2014
Zeitschriftentitel
Journal of Biotechnology
Band
191
Seite(n)
113-120
ISSN
0168-1656
Page URI
https://pub.uni-bielefeld.de/record/2710431

Zitieren

Wendler S, Ortseifen V, Persicke M, et al. Carbon source dependent biosynthesis of acarviose metabolites in Actinoplanes sp SE50/110. Journal of Biotechnology. 2014;191:113-120.
Wendler, S., Ortseifen, V., Persicke, M., Klein, A., Neshat, A., Niehaus, K., Schneiker-Bekel, S., et al. (2014). Carbon source dependent biosynthesis of acarviose metabolites in Actinoplanes sp SE50/110. Journal of Biotechnology, 191, 113-120. doi:10.1016/j.jbiotec.2014.08.019
Wendler, Sergej, Ortseifen, Vera, Persicke, Marcus, Klein, Andreas, Neshat, Armin, Niehaus, Karsten, Schneiker-Bekel, Susanne, et al. 2014. “Carbon source dependent biosynthesis of acarviose metabolites in Actinoplanes sp SE50/110”. Journal of Biotechnology 191: 113-120.
Wendler, S., Ortseifen, V., Persicke, M., Klein, A., Neshat, A., Niehaus, K., Schneiker-Bekel, S., Walter, F., Wehmeier, U. F., Kalinowski, J., et al. (2014). Carbon source dependent biosynthesis of acarviose metabolites in Actinoplanes sp SE50/110. Journal of Biotechnology 191, 113-120.
Wendler, S., et al., 2014. Carbon source dependent biosynthesis of acarviose metabolites in Actinoplanes sp SE50/110. Journal of Biotechnology, 191, p 113-120.
S. Wendler, et al., “Carbon source dependent biosynthesis of acarviose metabolites in Actinoplanes sp SE50/110”, Journal of Biotechnology, vol. 191, 2014, pp. 113-120.
Wendler, S., Ortseifen, V., Persicke, M., Klein, A., Neshat, A., Niehaus, K., Schneiker-Bekel, S., Walter, F., Wehmeier, U.F., Kalinowski, J., Pühler, A.: Carbon source dependent biosynthesis of acarviose metabolites in Actinoplanes sp SE50/110. Journal of Biotechnology. 191, 113-120 (2014).
Wendler, Sergej, Ortseifen, Vera, Persicke, Marcus, Klein, Andreas, Neshat, Armin, Niehaus, Karsten, Schneiker-Bekel, Susanne, Walter, Frederik, Wehmeier, Udo F., Kalinowski, Jörn, and Pühler, Alfred. “Carbon source dependent biosynthesis of acarviose metabolites in Actinoplanes sp SE50/110”. Journal of Biotechnology 191 (2014): 113-120.

9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Genome improvement of the acarbose producer Actinoplanes sp. SE50/110 and annotation refinement based on RNA-seq analysis.
Wolf T, Schneiker-Bekel S, Neshat A, Ortseifen V, Wibberg D, Zemke T, Pühler A, Kalinowski J., J Biotechnol 251(), 2017
PMID: 28427920
The MalR type regulator AcrC is a transcriptional repressor of acarbose biosynthetic genes in Actinoplanes sp. SE50/110.
Wolf T, Droste J, Gren T, Ortseifen V, Schneiker-Bekel S, Zemke T, Pühler A, Kalinowski J., BMC Genomics 18(1), 2017
PMID: 28743243
Comparative proteome analysis of Actinoplanes sp. SE50/110 grown with maltose or glucose shows minor differences for acarbose biosynthesis proteins but major differences for saccharide transporters.
Wendler S, Otto A, Ortseifen V, Bonn F, Neshat A, Schneiker-Bekel S, Wolf T, Zemke T, Wehmeier UF, Hecker M, Kalinowski J, Becher D, Pühler A., J Proteomics 131(), 2016
PMID: 26597626
Metabolic differences of industrial acarbose-producing Actinoplanes sp. A56 under various osmolality levels.
Li KT, Peng WF, Xia W, Huang L, Cheng X., World J Microbiol Biotechnol 32(1), 2016
PMID: 26712618
Metabolic differences of industrial acarbose-producing Actinoplanes sp. A56 under various osmolality levels
Li Kt, Peng Wf, Xia W, Huang L, Cheng X., World J Microbiol Biotechnol 32(1), 2016
PMID: IND604775110
Targeted genome editing in the rare actinomycete Actinoplanes sp. SE50/110 by using the CRISPR/Cas9 System.
Wolf T, Gren T, Thieme E, Wibberg D, Zemke T, Pühler A, Kalinowski J., J Biotechnol 231(), 2016
PMID: 27262504
Comprehensive proteome analysis of Actinoplanes sp. SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster.
Wendler S, Otto A, Ortseifen V, Bonn F, Neshat A, Schneiker-Bekel S, Walter F, Wolf T, Zemke T, Wehmeier UF, Hecker M, Kalinowski J, Becher D, Pühler A., J Proteomics 125(), 2015
PMID: 25896738

37 References

Daten bereitgestellt von Europe PubMed Central.

Acarbose – Ein Neues Wirkprinzip in Der Diabetestherapie
Bischoff, Nachrichten Aus Chemie Technik Und Laboratorium 42(11), 1994
Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation.
Boos W, Shuman H., Microbiol. Mol. Biol. Rev. 62(1), 1998
PMID: 9529892
Unexpected and widespread connections between bacterial glycogen and trehalose metabolism.
Chandra G, Chater KF, Bornemann S., Microbiology (Reading, Engl.) 157(Pt 6), 2011
PMID: 21474533

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
New Enzyme Inhibitors from Microorganisms (author's Transl)
Frommer, Plant. Med. 35(3), 1979
Studies designed to localize the essential structural unit of glycoside-hydrolase inhibitors of the acarbose type
Heiker, 1981
Identification, cloning, expression, and characterization of the extracellular acarbose-modifying glycosyltransferase, AcbD, from Actinoplanes sp. strain SE50.
Hemker M, Stratmann A, Goeke K, Schroder W, Lenz J, Piepersberg W, Pape H., J. Bacteriol. 183(15), 2001
PMID: 11443082
Structure and function of enzymes of the Leloir pathway for galactose metabolism.
Holden HM, Rayment I, Thoden JB., J. Biol. Chem. 278(45), 2003
PMID: 12923184
Biosynthetic studies on the alpha-glucosidase inhibitor acarbose in Actinoplanes sp.: source of the maltose unit.
Lee S, Sauerbrei B, Niggemann J, Egelkrout E., J. Antibiot. 50(11), 1997
PMID: 9592570
Glucose- and glucokinase-controlled mal gene expression in Escherichia coli.
Lengsfeld C, Schonert S, Dippel R, Boos W., J. Bacteriol. 191(3), 2008
PMID: 19028900
An effective and simplified scale-up strategy for acarbose fermentation based on the carbon source control
Li Kt, Wie Sj, Huang L, Cheng X., World J. Microbiol. Biotechnol. 28(2), 2012
PMID: IND44746154
Members of the genus Actinoplanes and their antibiotics
Parenti, Ann. Rev. Microbiol. 33(January), 1979
Role of maltose enzymes in glycogen synthesis by Escherichia coli.
Park JT, Shim JH, Tran PL, Hong IH, Yong HU, Oktavina EF, Nguyen HD, Kim JW, Lee TS, Park SH, Boos W, Park KH., J. Bacteriol. 193(10), 2011
PMID: 21421758
Probability-based protein identification by searching sequence databases using mass spectrometry data.
Perkins DN, Pappin DJ, Creasy DM, Cottrell JS., Electrophoresis 20(18), 1999
PMID: 10612281
Quantification of acarbose in human plasma by liquid chromatography–electrospray tandem mass spectrometry
Raut, J. Liq. Chromatogr. Relat. Technol. 27(11), 2004
The Gac-gene cluster for the production of acarbose from streptomyces glaucescens GLA.O: identification, isolation and characterization
Rockser, J. Biotechnol. 140(1–2), 2009
alpha-Glucosidase inhibitors. New complex oligosaccharides of microbial origin.
Schmidt DD, Frommer W, Junge B, Muller L, Wingender W, Truscheit E, Schafer D., Naturwissenschaften 64(10), 1977
PMID: 337162
Sequencing of high G+C microbial genomes using the ultrafast pyrosequencing technology.
Schwientek P, Szczepanowski R, Ruckert C, Stoye J, Puhler A., J. Biotechnol. 155(1), 2011
PMID: 21536083
The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110.
Schwientek P, Szczepanowski R, Ruckert C, Kalinowski J, Klein A, Selber K, Wehmeier UF, Stoye J, Puhler A., BMC Genomics 13(), 2012
PMID: 22443545
Comparative RNA-sequencing of the acarbose producer Actinoplanes sp. SE50/110 cultivated in different growth media.
Schwientek P, Wendler S, Neshat A, Eirich C, Ruckert C, Klein A, Wehmeier UF, Kalinowski J, Stoye J, Puhler A., J. Biotechnol. 167(2), 2012
PMID: 23142701
Roles of maltodextrin and glycogen phosphorylases in maltose utilization and glycogen metabolism in Corynebacterium glutamicum.
Seibold GM, Wurst M, Eikmanns BJ., Microbiology (Reading, Engl.) 155(Pt 2), 2009
PMID: 19202084
Significantly enhanced production of acarbose in fed-batch fermentation with the addition of S-adenosylmethionine.
Sun LH, Li MG, Wang YS, Zheng YG., J. Microbiol. Biotechnol. 22(6), 2012
PMID: 22573161
Cell wall composition in relation to the taxonomy of some Actinoplanaceae.
Szaniszlo PJ, Gooder H., J. Bacteriol. 94(6), 1967
PMID: 6074406
Chemistry and biochemistry of microbial α-glucosidase inhibitors
Truscheit, Angew. Chem. Int. Ed. Engl. 20(9), 1981
The biosynthesis and metabolism of acarbose in Actinoplanes sp. SE 50/110: a progress report
Wehmeier, Biocatal. Biotransform. 21(4–5), 2003
Biotechnology and molecular biology of the alpha-glucosidase inhibitor acarbose.
Wehmeier UF, Piepersberg W., Appl. Microbiol. Biotechnol. 63(6), 2003
PMID: 14669056
The cytosolic and extracellular proteomes of Actinoplanes sp. SE50/110 led to the identification of gene products involved in acarbose metabolism.
Wendler S, Hurtgen D, Kalinowski J, Klein A, Niehaus K, Schulte F, Schwientek P, Wehlmann H, Wehmeier UF, Puhler A., J. Biotechnol. 167(2), 2012
PMID: 22944206
Biosynthesis of the C(7)-cyclitol moiety of acarbose in Actinoplanes species SE50/110. 7-O-phosphorylation of the initial cyclitol precursor leads to proposal of a new biosynthetic pathway.
Zhang CS, Stratmann A, Block O, Bruckner R, Podeschwa M, Altenbach HJ, Wehmeier UF, Piepersberg W., J. Biol. Chem. 277(25), 2002
PMID: 11937512
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25169663
PubMed | Europe PMC

Suchen in

Google Scholar