Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner-Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis

Schatschneider S, Huber C, Neuweger H, Watt T, Pühler A, Eisenreich W, Wittmann C, Niehaus K, Vorhölter F-J (2014)
Molecular BioSystems 10(10): 2663-2676.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
The well-studied plant pathogenic bacterium Xanthomonas campestris pv. campestris (Xcc) synthesizes the biotechnologically important polysaccharide xanthan gum, which is also regarded as a virulence factor in plant interactions. In Xcc, sugars like glucose are utilized as a source to generate energy and biomass for growth and pathogenicity. In this study, we used [1-C-13]glucose as a tracer to analyze the fluxes in the central metabolism of the bacterium growing in a minimal medium. C-13-Metabolic flux analysis based on gas chromatography-mass spectrometry (GC-MS) confirmed the prevalent catabolic role of the Entner-Doudoroff pathway. Comparative nuclear magnetic resonance (NMR)-based isotopologue profiling of a mutant deficient in glycolysis gave evidence for a moderate flux via glycolysis in the wild-type. In addition to reconfirming the Entner-Doudoroff pathway as a catabolic main route, this approach affirmed a numerically minor but important flux via the pentose phosphate pathway.
Erscheinungsjahr
2014
Zeitschriftentitel
Molecular BioSystems
Band
10
Ausgabe
10
Seite(n)
2663-2676
ISSN
1742-206X
Page URI
https://pub.uni-bielefeld.de/record/2699819

Zitieren

Schatschneider S, Huber C, Neuweger H, et al. Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner-Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis. Molecular BioSystems. 2014;10(10):2663-2676.
Schatschneider, S., Huber, C., Neuweger, H., Watt, T., Pühler, A., Eisenreich, W., Wittmann, C., et al. (2014). Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner-Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis. Molecular BioSystems, 10(10), 2663-2676. doi:10.1039/c4mb00198b
Schatschneider, Sarah, Huber, Claudia, Neuweger, Heiko, Watt, Tony, Pühler, Alfred, Eisenreich, Wolfgang, Wittmann, Christoph, Niehaus, Karsten, and Vorhölter, Frank-Jörg. 2014. “Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner-Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis”. Molecular BioSystems 10 (10): 2663-2676.
Schatschneider, S., Huber, C., Neuweger, H., Watt, T., Pühler, A., Eisenreich, W., Wittmann, C., Niehaus, K., and Vorhölter, F. - J. (2014). Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner-Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis. Molecular BioSystems 10, 2663-2676.
Schatschneider, S., et al., 2014. Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner-Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis. Molecular BioSystems, 10(10), p 2663-2676.
S. Schatschneider, et al., “Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner-Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis”, Molecular BioSystems, vol. 10, 2014, pp. 2663-2676.
Schatschneider, S., Huber, C., Neuweger, H., Watt, T., Pühler, A., Eisenreich, W., Wittmann, C., Niehaus, K., Vorhölter, F.-J.: Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner-Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis. Molecular BioSystems. 10, 2663-2676 (2014).
Schatschneider, Sarah, Huber, Claudia, Neuweger, Heiko, Watt, Tony, Pühler, Alfred, Eisenreich, Wolfgang, Wittmann, Christoph, Niehaus, Karsten, and Vorhölter, Frank-Jörg. “Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner-Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis”. Molecular BioSystems 10.10 (2014): 2663-2676.

11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Comparative transcription profiling of two fermentation cultures of Xanthomonas campestris pv. campestris B100 sampled in the growth and in the stationary phase.
Alkhateeb RS, Vorhölter FJ, Steffens T, Rückert C, Ortseifen V, Hublik G, Niehaus K, Pühler A., Appl Microbiol Biotechnol 102(15), 2018
PMID: 29858955
3-methylcrotonyl Coenzyme A (CoA) carboxylase complex is involved in the Xanthomonas citri subsp. citri lifestyle during citrus infection.
Tomassetti M, Garavaglia BS, Vranych CV, Gottig N, Ottado J, Gramajo H, Diacovich L., PLoS One 13(6), 2018
PMID: 29879157
Xanthomonas citri ssp. citri requires the outer membrane porin OprB for maximal virulence and biofilm formation.
Ficarra FA, Grandellis C, Galván EM, Ielpi L, Feil R, Lunn JE, Gottig N, Ottado J., Mol Plant Pathol 18(5), 2017
PMID: 27226289
Comparative analysis of different xanthan samples by atomic force microscopy.
Teckentrup J, Al-Hammood O, Steffens T, Bednarz H, Walhorn V, Niehaus K, Anselmetti D., J Biotechnol 257(), 2017
PMID: 27919690
Refined annotation of the complete genome of the phytopathogenic and xanthan producing Xanthomonas campestris pv. campestris strain B100 based on RNA sequence data.
Alkhateeb RS, Rückert C, Rupp O, Pucker B, Hublik G, Wibberg D, Niehaus K, Pühler A, Vorhölter FJ., J Biotechnol 253(), 2017
PMID: 28506932
Systems and synthetic biology perspective of the versatile plant-pathogenic and polysaccharide-producing bacterium Xanthomonas campestris.
Schatschneider S, Schneider J, Blom J, Létisse F, Niehaus K, Goesmann A, Vorhölter FJ., Microbiology 163(8), 2017
PMID: 28795660
Pathway analysis using (13) C-glycerol and other carbon tracers reveals a bipartite metabolism of Legionella pneumophila.
Häuslein I, Manske C, Goebel W, Eisenreich W, Hilbi H., Mol Microbiol 100(2), 2016
PMID: 26691313
CeCaFDB: a curated database for the documentation, visualization and comparative analysis of central carbon metabolic flux distributions explored by 13C-fluxomics.
Zhang Z, Shen T, Rui B, Zhou W, Zhou X, Shang C, Xin C, Liu X, Li G, Jiang J, Li C, Li R, Han M, You S, Yu G, Yi Y, Wen H, Liu Z, Xie X., Nucleic Acids Res 43(database issue), 2015
PMID: 25392417
Draft genome of the xanthan producer Xanthomonas campestris NRRL B-1459 (ATCC 13951).
Wibberg D, Alkhateeb RS, Winkler A, Albersmeier A, Schatschneider S, Albaum S, Niehaus K, Hublik G, Pühler A, Vorhölter FJ., J Biotechnol 204(), 2015
PMID: 25865276

86 References

Daten bereitgestellt von Europe PubMed Central.

Pathogenomics of Xanthomonas: understanding bacterium-plant interactions.
Ryan RP, Vorholter FJ, Potnis N, Jones JB, Van Sluys MA, Bogdanove AJ, Dow JM., Nat. Rev. Microbiol. 9(5), 2011
PMID: 21478901
Bacterial polysaccharides suppress induced innate immunity by calcium chelation.
Aslam SN, Newman MA, Erbs G, Morrissey KL, Chinchilla D, Boller T, Jensen TT, De Castro C, Ierano T, Molinaro A, Jackson RW, Knight MR, Cooper RM., Curr. Biol. 18(14), 2008
PMID: 18639458
Analysis of three Xanthomonas axonopodis pv. citri effector proteins in pathogenicity and their interactions with host plant proteins.
Dunger G, Garofalo CG, Gottig N, Garavaglia BS, Rosa MC, Farah CS, Orellano EG, Ottado J., Mol. Plant Pathol. 13(8), 2012
PMID: 22435635
Xanthan induces plant susceptibility by suppressing callose deposition.
Yun MH, Torres PS, El Oirdi M, Rigano LA, Gonzalez-Lamothe R, Marano MR, Castagnaro AP, Dankert MA, Bouarab K, Vojnov AA., Plant Physiol. 141(1), 2006
PMID: 16531487
Xanthan gum: production, recovery, and properties.
Garcia-Ochoa F, Santos VE, Casas JA, Gomez E., Biotechnol. Adv. 18(7), 2000
PMID: 14538095
The effect of hydrodynamic stress on the growth of Xanthomonas campestris cultures in a stirred and sparged tank bioreactor.
Garcia-Ochoa F, Gomez E, Alcon A, Santos VE., Bioprocess Biosyst Eng 36(7), 2012
PMID: 23010723

Hublik, 2012
The role of glucose kinase in carbohydrate utilization and extracellular polysaccharide production in Xanthomonas campestris pathovar campestris.
Lu GT, Yang ZJ, Peng FY, Tan YN, Tang YQ, Feng JX, Tang DJ, He YQ, Tang JL., Microbiology (Reading, Engl.) 153(Pt 12), 2007
PMID: 18048941

Whitfield, J. Gen. Microbiol. 128(), 1982
The influence of metabolic network structures and energy requirements on xanthan gum yields.
Letisse F, Chevallereau P, Simon JL, Lindley N., J. Biotechnol. 99(3), 2002
PMID: 12385717
Comparative glucose catabolism of Xanthomonas species.
Zagallo AC, Wang CH., J. Bacteriol. 93(3), 1967
PMID: 6025434
Carbohydrate cycling in micro-organisms: what can (13)C-NMR tell us?
Portais JC, Delort AM., FEMS Microbiol. Rev. 26(4), 2002
PMID: 12413666
Glucose metabolism in Xanthomonas campestris and influence of methionine on the carbon flow.
Pielken P, Schimz KL, Eggeling L, Sahm H., Can. J. Microbiol. 34(12), 1988
PMID: 3148363
The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis.
Vorholter FJ, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T, Ruckert C, Schmid J, Sidhu VK, Sieber V, Tauch A, Watt SA, Weisshaar B, Becker A, Niehaus K, Puhler A., J. Biotechnol. 134(1-2), 2008
PMID: 18304669
Characterization of the pyrophosphate-dependent 6-phosphofructokinase from Xanthomonas campestris pv. campestris.
Frese M, Schatschneider S, Voss J, Vorholter FJ, Niehaus K., Arch. Biochem. Biophys. 546(), 2014
PMID: 24508689
Establishment, in silico analysis, and experimental verification of a large-scale metabolic network of the xanthan producing Xanthomonas campestris pv. campestris strain B100.
Schatschneider S, Persicke M, Watt SA, Hublik G, Puhler A, Niehaus K, Vorholter FJ., J. Biotechnol. 167(2), 2013
PMID: 23395674
13C metabolic flux analysis.
Wiechert W., Metab. Eng. 3(3), 2001
PMID: 11461141
Carbon metabolism of intracellular bacterial pathogens and possible links to virulence.
Eisenreich W, Dandekar T, Heesemann J, Goebel W., Nat. Rev. Microbiol. 8(6), 2010
PMID: 20453875
Metabolic networks in motion: 13C-based flux analysis.
Sauer U., Mol. Syst. Biol. 2(), 2006
PMID: 17102807
Fluxome analysis using GC-MS.
Wittmann C., Microb. Cell Fact. 6(), 2007
PMID: 17286851
OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis.
Quek LE, Wittmann C, Nielsen LK, Kromer JO., Microb. Cell Fact. 8(), 2009
PMID: 19409084

Vauterin, Int. J. Syst. Bacteriol. 46(), 1996

Yang, Syst. Appl. Microbiol. 16(), 1993
MeltDB: a software platform for the analysis and integration of metabolomics experiment data.
Neuweger H, Albaum SP, Dondrup M, Persicke M, Watt T, Niehaus K, Stoye J, Goesmann A., Bioinformatics 24(23), 2008
PMID: 18765459
Markov Chain Monte Carlo Algorithm based metabolic flux distribution analysis on Corynebacterium glutamicum.
Kadirkamanathan V, Yang J, Billings SA, Wright PC., Bioinformatics 22(21), 2006
PMID: 16940326
Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements.
Antoniewicz MR, Kelleher JK, Stephanopoulos G., Metab. Eng. 8(4), 2006
PMID: 16631402
Somewhat in control--the role of transcription in regulating microbial metabolic fluxes.
Kochanowski K, Sauer U, Chubukov V., Curr. Opin. Biotechnol. 24(6), 2013
PMID: 23571096
Functioning of a metabolic flux sensor in Escherichia coli.
Kochanowski K, Volkmer B, Gerosa L, Haverkorn van Rijsewijk BR, Schmidt A, Heinemann M., Proc. Natl. Acad. Sci. U.S.A. 110(3), 2012
PMID: 23277571

Conway, FEMS Microbiol. Lett. 103(), 1992
The biology of Zymomonas.
Swings J, De Ley J., Bacteriol Rev 41(1), 1977
PMID: 16585

Fernandez-Garcia, Plant, Cell Environ. 34(), 2011
Transcriptional reprogramming and phenotypical changes associated with growth of Xanthomonas campestris pv. campestris in cabbage xylem sap.
Duge de Bernonville T, Noel LD, SanCristobal M, Danoun S, Becker A, Soreau P, Arlat M, Lauber E., FEMS Microbiol. Ecol. 89(3), 2014
PMID: 24784488
Comparison of the genomes of two Xanthomonas pathogens with differing host specificities.
da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA, Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos Santos M, Truffi D, Tsai SM, White FF, Setubal JC, Kitajima JP., Nature 417(6887), 2002
PMID: 12024217
The xylan utilization system of the plant pathogen Xanthomonas campestris pv campestris controls epiphytic life and reveals common features with oligotrophic bacteria and animal gut symbionts.
Dejean G, Blanvillain-Baufume S, Boulanger A, Darrasse A, Duge de Bernonville T, Girard AL, Carrere S, Jamet S, Zischek C, Lautier M, Sole M, Buttner D, Jacques MA, Lauber E, Arlat M., New Phytol. 198(3), 2013
PMID: 23442088
Catabolite repression control in the Pseudomonads.
Collier DN, Hager PW, Phibbs PV Jr., Res. Microbiol. 147(6-7), 1996
PMID: 9084769
Carbohydrate metabolism and carbon fixation in Roseobacter denitrificans OCh114.
Tang KH, Feng X, Tang YJ, Blankenship RE., PLoS ONE 4(10), 2009
PMID: 19794911
Metabolic fluxes in the central carbon metabolism of Dinoroseobacter shibae and Phaeobacter gallaeciensis, two members of the marine Roseobacter clade.
Furch T, Preusse M, Tomasch J, Zech H, Wagner-Dobler I, Rabus R, Wittmann C., BMC Microbiol. 9(), 2009
PMID: 19788729
The functional structure of central carbon metabolism in Pseudomonas putida KT2440.
Sudarsan S, Dethlefsen S, Blank LM, Siemann-Herzberg M, Schmid A., Appl. Environ. Microbiol. 80(17), 2014
PMID: 24951791
Robustness and plasticity of metabolic pathway flux among uropathogenic isolates of Pseudomonas aeruginosa.
Berger A, Dohnt K, Tielen P, Jahn D, Becker J, Wittmann C., PLoS ONE 9(4), 2014
PMID: 24709961
Identification of the Entner-Doudoroff pathway in an antibiotic-producing actinomycete species.
Gunnarsson N, Mortensen UH, Sosio M, Nielsen J., Mol. Microbiol. 52(3), 2004
PMID: 15101992
Metabolic network analysis of Streptomyces tenebrarius, a Streptomyces species with an active entner-doudoroff pathway.
Borodina I, Scholler C, Eliasson A, Nielsen J., Appl. Environ. Microbiol. 71(5), 2005
PMID: 15870314
Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis.
He L, Xiao Y, Gebreselassie N, Zhang F, Antoniewiez MR, Tang YJ, Peng L., Biotechnol. Bioeng. 111(3), 2014
PMID: 24122357
Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum.
Bartek T, Blombach B, Lang S, Eikmanns BJ, Wiechert W, Oldiges M, Noh K, Noack S., Appl. Environ. Microbiol. 77(18), 2011
PMID: 21784914

Swarup, Metab. Eng. 24C(), 2014

Flamholz, PNAS 110(), 2013
The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress.
Chavarria M, Nikel PI, Perez-Pantoja D, de Lorenzo V., Environ. Microbiol. 15(6), 2013
PMID: 23301697
Reactive oxygen species and their role in plant defence and cell wall metabolism.
O'Brien JA, Daudi A, Butt VS, Bolwell GP., Planta 236(3), 2012
PMID: 22767200
Impact of expression of EMP enzymes on glucose metabolism in Zymomonas mobilis.
Chen RR, Agrawal M, Mao Z., Appl. Biochem. Biotechnol. 170(4), 2013
PMID: 23613118
Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0.
Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BO., Nat Protoc 6(9), 2011
PMID: 21886097
Metabolomics: quantification of intracellular metabolite dynamics.
Buchholz A, Hurlebaus J, Wandrey C, Takors R., Biomol. Eng. 19(1), 2002
PMID: 12103361
Non-stationary (13)C-metabolic flux ratio analysis.
Horl M, Schnidder J, Sauer U, Zamboni N., Biotechnol. Bioeng. 110(12), 2013
PMID: 23860906
Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments.
Noh K, Gronke K, Luo B, Takors R, Oldiges M, Wiechert W., J. Biotechnol. 129(2), 2006
PMID: 17207877
Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications.
Tang KH, Tang YJ, Blankenship RE., Front Microbiol 2(), 2011
PMID: 21866228
R factor transfer in Rhizobium leguminosarum.
Beringer JE., J. Gen. Microbiol. 84(1), 1974
PMID: 4612098
In vivo analysis of intracellular amino acid labelings by GC/MS.
Wittmann C, Hans M, Heinzle E., Anal. Biochem. 307(2), 2002
PMID: 12202258
Comparative study on central metabolic fluxes of Bacillus megaterium strains in continuous culture using 13C labelled substrates.
Furch T, Hollmann R, Wittmann C, Wang W, Deckwer WD., Bioprocess Biosyst Eng 30(1), 2006
PMID: 17086410
MeltDB 2.0-advances of the metabolomics software system.
Kessler N, Neuweger H, Bonte A, Langenkamper G, Niehaus K, Nattkemper TW, Goesmann A., Bioinformatics 29(19), 2013
PMID: 23918246
Correcting mass isotopomer distributions for naturally occurring isotopes.
van Winden WA, Wittmann C, Heinzle E, Heijnen JJ., Biotechnol. Bioeng. 80(4), 2002
PMID: 12325156
IsoCor: correcting MS data in isotope labeling experiments.
Millard P, Letisse F, Sokol S, Portais JC., Bioinformatics 28(9), 2012
PMID: 22419781

Ingraham, 1983

Nocon, Metab. Eng. 24C(), 2014
Visualizing post genomics data-sets on customized pathway maps by ProMeTra-aeration-dependent gene expression and metabolism of Corynebacterium glutamicum as an example.
Neuweger H, Persicke M, Albaum SP, Bekel T, Dondrup M, Huser AT, Winnebald J, Schneider J, Kalinowski J, Goesmann A., BMC Syst Biol 3(), 2009
PMID: 19698148
Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions.
Antoniewicz MR, Kelleher JK, Stephanopoulos G., Metab. Eng. 9(1), 2006
PMID: 17088092
Expression of Corynebacterium glutamicum glycolytic genes varies with carbon source and growth phase.
Han SO, Inui M, Yukawa H., Microbiology (Reading, Engl.) 153(Pt 7), 2007
PMID: 17600063
Global expression profiling of acetate-grown Escherichia coli.
Oh MK, Rohlin L, Kao KC, Liao JC., J. Biol. Chem. 277(15), 2002
PMID: 11815613
Biosynthesis of nucleotides, flavins, and deazaflavins in Methanobacterium thermoautotrophicum.
Eisenreich W, Schwarzkopf B, Bacher A., J. Biol. Chem. 266(15), 1991
PMID: 2033055
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25072918
PubMed | Europe PMC

Suchen in

Google Scholar