Positive force feedback in development of substrate grip in the stick insect tarsus

Zill SN, Chaudhry S, Exter A, Büschges A, Schmitz J (2014)
Arthropod Structure & Development 43(5): 441-455.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Zill, Sasha N; Chaudhry, Sumaiya; Exter, AnnelieUniBi; Büschges, Ansgar; Schmitz, JosefUniBi
Erscheinungsjahr
2014
Zeitschriftentitel
Arthropod Structure & Development
Band
43
Ausgabe
5
Seite(n)
441-455
ISSN
1467-8039
Page URI
https://pub.uni-bielefeld.de/record/2685341

Zitieren

Zill SN, Chaudhry S, Exter A, Büschges A, Schmitz J. Positive force feedback in development of substrate grip in the stick insect tarsus. Arthropod Structure & Development. 2014;43(5):441-455.
Zill, S. N., Chaudhry, S., Exter, A., Büschges, A., & Schmitz, J. (2014). Positive force feedback in development of substrate grip in the stick insect tarsus. Arthropod Structure & Development, 43(5), 441-455. doi:10.1016/j.asd.2014.06.002
Zill, Sasha N, Chaudhry, Sumaiya, Exter, Annelie, Büschges, Ansgar, and Schmitz, Josef. 2014. “Positive force feedback in development of substrate grip in the stick insect tarsus”. Arthropod Structure & Development 43 (5): 441-455.
Zill, S. N., Chaudhry, S., Exter, A., Büschges, A., and Schmitz, J. (2014). Positive force feedback in development of substrate grip in the stick insect tarsus. Arthropod Structure & Development 43, 441-455.
Zill, S.N., et al., 2014. Positive force feedback in development of substrate grip in the stick insect tarsus. Arthropod Structure & Development, 43(5), p 441-455.
S.N. Zill, et al., “Positive force feedback in development of substrate grip in the stick insect tarsus”, Arthropod Structure & Development, vol. 43, 2014, pp. 441-455.
Zill, S.N., Chaudhry, S., Exter, A., Büschges, A., Schmitz, J.: Positive force feedback in development of substrate grip in the stick insect tarsus. Arthropod Structure & Development. 43, 441-455 (2014).
Zill, Sasha N, Chaudhry, Sumaiya, Exter, Annelie, Büschges, Ansgar, and Schmitz, Josef. “Positive force feedback in development of substrate grip in the stick insect tarsus”. Arthropod Structure & Development 43.5 (2014): 441-455.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Effects of force detecting sense organs on muscle synergies are correlated with their response properties.
Zill SN, Neff D, Chaudhry S, Exter A, Schmitz J, Büschges A., Arthropod Struct Dev 46(4), 2017
PMID: 28552666
Structure and function of the elastic organ in the tibia of a tenebrionid beetle.
Ichikawa T, Toh Y, Sakamoto H., Naturwissenschaften 103(5-6), 2016
PMID: 27118185
Mechanosensation and Adaptive Motor Control in Insects.
Tuthill JC, Wilson RI., Curr Biol 26(20), 2016
PMID: 27780045
The role of leg touchdown for the control of locomotor activity in the walking stick insect.
Schmitz J, Gruhn M, Büschges A., J Neurophysiol 113(7), 2015
PMID: 25652931

65 References

Daten bereitgestellt von Europe PubMed Central.


Akay, 2002
Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg
Akay, J. Neurophysiol. 92(), 2004
Adaptive features on the tarsi of cockroaches (Insecta: Dictyoptera)
Arnold, Int. J. Insect Morphol. Embryol. 3(), 1974
Gecko adhesion: evolutionary nanotechnology
Autumn, Philos. Trans. R. Soc. A 366(), 2008
Dynamic adhesion in animals: mechanisms and biomimetic implications
Barnes, J. Comp. Physiol. 192(), 2006

Bässler, 1983
Motor output of the denervated thoracic ventral nerve cord in the stick insect Carausius morosus
Bässler, J. Exp. Biol. 105(), 1983
Comparison of smooth and hairy attachment pads in insects: friction, adhesion and mechanisms for direction-dependence
Bullock, J. Exp. Biol. 211(), 2008
Positive feedback from proprioceptors involved in leg movements of the locust
Burrows, J. Comp. Physiol. A 163(), 1988
Activity of the claw retractor muscle in stick insects in wall and ceiling situations
Bußhardt, J. Exp. Biol. 214(), 2011
Walking on smooth and rough ground: activity and timing of the claw retractor muscle in the beetle Pachnoda marginata peregrina (Coleoptera, Scarabaeidae)
Bußhardt, J. Exp. Biol. 216(), 2013
Ground reaction forces in vertically ascending beetles and corresponding activity of the claw retractor muscle on smooth and rough substrates
Bußhardt, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. (), 2014
Pushing versus pulling: division of labour between tarsal attachment pads in cockroaches
Clemente, Proc. R. Soc. B 275(), 2008
Passive foot design and contact area analysis for climbing mini-whegs
Daltorio, 2007
Biomechanics of smooth adhesive pads in insects: influence of tarsal secretion on attachment performance
Drechsler, J. Comp. Physiol. A 192(), 2006
Load-regulating mechanisms in gait and posture: comparative aspects.
Duysens J, Clarac F, Cruse H., Physiol. Rev. 80(1), 2000
PMID: 10617766
Rapid preflexes in smooth adhesive pads of insects prevent sudden detachment
Endlein, Proc. R. Soc. B 280(), 2013

Fisch, 2007
Pattern generation for walking and searching movements of a stick insect leg: 1. Intra- and interjoint coordination of motor activity in a single middle leg preparation
Fischer, J. Neurophysiol. 85(), 2001
Encoding properties of haltere neurons enable motion feature detection in a biological gyroscope.
Fox JL, Fairhall AL, Daniel TL., Proc. Natl. Acad. Sci. U.S.A. 107(8), 2010
PMID: 20133721

Fox, 2010
Elasticity and movements of the cockroach tarsus in walking
Frazier, J. Comp. Physiol. A 185(), 1999
Motoneurons, DUM cells, and sensory neurons in an insect thoracic ganglion: a tracing study in the stick insect Carausius morosus
Goldammer, J. Comp. Neurol. 520(), 2012
The motor innervation of the leg musculature and motor output during thanatosis in the stick insect Carausius morosus
Godden, Br. J. Comp. Physiol. 80(), 1972
Design of insect unguitractor apparatus
Gorb, J. Morphol. 230(), 1996

Gorb, 2001
Biological attachment devices: exploring nature's diversity for biomimetics
Gorb, Philos. Trans. R. Soc. A 366(), 2008
Structural design and biomechanics of friction-based releasable attachment devices in insects.
Gorb SN, Beutel RG, Gorb EV, Jiao Y, Kastner V, Niederegger S, Popov VL, Scherge M, Schwarz U, Votsch W., Integr. Comp. Biol. 42(6), 2002
PMID: 21680397
Rapid mechano-sensory pathways code leg impact and elicit very rapid reflexes in insects
Höltje, J. Exp. Biol. 206(), 2003
Microscopic analysis of mechanosensory system monitoring the dynamic claw actions in the tenebrionid beetle Zophobas atratus
Ichikawa, Zoomorphology (), 2014
Control of position and movement is simplified by combined muscle spindle and Golgi tendon organ feedback
Kistemaker, J. Neurophysiol. 109(), 2013
Premotor interneurons in generation of adaptive leg reflexes and voluntary movements in stick insects
Kittmann, J. Neurobiol. 31(), 1996

Krück, 1976
Surface contact and design of fibrillar ‘friction pads’ in stick insects (Carausius morosus): mechanisms for large friction coefficients and negligible adhesion
Labonte, J. R. Soc. Interface 11(94), 2014
The tarso-pretarsal chordotonal organ as an element in cockroach walking
Larsen, J. Comp. Physiol. A 180(), 1997
Motor neuronal receptive fields delimit patterns of motor activity during locomotion of the locust
Laurent, J. Neurosci. 8(), 1988
Innervation pattern and sensory supply of the midleg of Schistocerca gregaria (Insecta, Orthopteroidea)
Mücke, Zoomorphology 110(), 1991
Contact behaviour of tenent setae in attachment pads of the blowfly Calliphora vicina (Diptera, Calliphoridae)
Niederegger, J. Comp. Physiol. A 187(), 2002
Walking on a ‘peg leg’: extensor muscle activities and sensory feedback after distal leg denervation in cockroaches
Noah, J. Comp. Physiol. A 190(), 2004
Design aspects of a climbing hexapod
Palmer, 2009
Proprioception in insects. II. The action of the campaniform sensilla on the legs
Pringle, J. Exp. Biol. 15(), 1938
Positive force feedback control of muscles
Prochazka, J. Neurophysiol. 77(), 1997
Function of a muscle whose apodeme travels through a joint moved by other muscles: why the retractor unguis muscle in stick insects is tripartite and has no antagonist
Radnikow, J. Exp. Biol. 157(), 1991
Instantaneous kinematic phase reflects neuromechanical response to lateral perturbations of running cockroaches.
Revzen S, Burden SA, Moore TY, Mongeau JM, Full RJ., Biol Cybern 107(2), 2013
PMID: 23371006
Encoding of forces by cockroach tibial campaniform sensilla: implications in dynamic control of posture and locomotion
Ridgel, J. Comp. Physiol. A 186(), 2000
Force transformation in spider strain sensors: white light interferometry
Schaber, J. R. Soc. Interface 9(), 2012
Micromechanics of smooth adhesive organs in stick insects: pads are mechanically anisotropic and softer towards the adhesive surface
Scholz, J. Comp. Physiol. A 194(), 2008
Biologically inspired climbing with a hexapedal robot
Spenko, J. Field Robot. 25(), 2008
Insects use two distinct classes of steps during unrestrained locomotion.
Theunissen LM, Durr V., PLoS ONE 8(12), 2013
PMID: 24376877
Design and mechanical properties of insect cuticle.
Vincent JF, Wegst UG., Arthropod Struct Dev 33(3), 2004
PMID: 18089034
Zum Verhalten des Krallenbeugersystems bei der Stabheuschrecke Carausius morosus Br.
Walther, Z. Vergl. Physiol. 62(), 1969
Small motor axons in orthopteran insects. A reinvestigation of the innervation of the femoral retractor unguis muscle in a stick insect and two species of locust
Walther, J. Exp. Biol. 87(), 1980
The co-ordination of walking movements in arthropods.
Wendler G., Symp. Soc. Exp. Biol. 20(), 1966
PMID: 5958364
Screenbot: walking inverted using distributed inward gripping
Wile, 2008
The whole is more than the sum of all its parts: collective effect of spider attachment organs
Wohlfart, J. Exp. Biol. 217(), 2014
Load sensing and control of posture and locomotion.
Zill S, Schmitz J, Buschges A., Arthropod Struct Dev 33(3), 2004
PMID: 18089039
Detecting substrate engagement: responses of tarsal campaniform sensilla in cockroaches
Zill, J. Comp. Physiol. A 196(), 2010
Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus
Zill, J. Comp. Physiol. A 197(), 2011
Force encoding in stick insect legs delineates a reference frame for motor control
Zill, J. Neurophysiol. 108(), 2012
Directional specificity and encoding of muscle forces and loads by stick insect tibial campaniform sensilla, including receptors with round cuticular caps
Zill, Arthropod Struct. Dev. 6(), 2013
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24951882
PubMed | Europe PMC

Suchen in

Google Scholar