Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032

Mentz A, Neshat A, Pfeifer-Sancar K, Pühler A, Rückert C, Kalinowski J (2013)
BMC Genomics 14(1): 714.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
BACKGROUND: Recent discoveries on bacterial transcriptomes gave evidence that small RNAs (sRNAs) have important regulatory roles in prokaryotic cells. Modern high-throughput sequencing approaches (RNA-Seq) enable the most detailed view on transcriptomes offering an unmatched comprehensiveness and single-base resolution. Whole transcriptome data obtained by RNA-Seq can be used to detect and characterize all transcript species, including small RNAs. Here, we describe an RNA-Seq approach for comprehensive detection and characterization of small RNAs from Corynebacterium glutamicum, an actinobacterium of high industrial relevance and model organism for medically important Corynebacterianeae, such as C. diphtheriae and Mycobacterium tuberculosis. RESULTS: In our RNA-Seq approach, total RNA from C. glutamicum ATCC 13032 was prepared from cultures grown in minimal medium at exponential growth or challenged by physical (heat shock, cold shock) or by chemical stresses (diamide, H2O2, NaCl) at this time point. Total RNA samples were pooled and sequencing libraries were prepared from the isolated small RNA fraction. High throughput short read sequencing and mapping yielded over 800 sRNA genes. By determining their 5[prime]- and 3[prime]-ends and inspection of their locations, these potential sRNA genes were classified into UTRs of mRNAs (316), cis-antisense sRNAs (543), and trans-encoded sRNAs (262). For 77 of trans-encoded sRNAs significant sequence and secondary structure conservation was found by a computational approach using a whole genome alignment with the closely related species C. efficiens YS-314 and C. diphtheriae NCTC 13129. Three selected trans-encoded sRNAs were characterized by Northern blot analysis and stress-specific transcript patterns were found. CONCLUSIONS: The study showed comparable numbers of sRNAs known from genome-wide surveys in other bacteria. In detail, our results give deep insight into the comprehensive equipment of sRNAs in C. glutamicum and provide a sound basis for further studies concerning the functions of these sRNAs.
Erscheinungsjahr
2013
Zeitschriftentitel
BMC Genomics
Band
14
Ausgabe
1
Art.-Nr.
714
ISSN
1471-2164
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2631969

Zitieren

Mentz A, Neshat A, Pfeifer-Sancar K, Pühler A, Rückert C, Kalinowski J. Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032. BMC Genomics. 2013;14(1): 714.
Mentz, A., Neshat, A., Pfeifer-Sancar, K., Pühler, A., Rückert, C., & Kalinowski, J. (2013). Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032. BMC Genomics, 14(1), 714. doi:10.1186/1471-2164-14-714
Mentz, Almut, Neshat, Armin, Pfeifer-Sancar, Katharina, Pühler, Alfred, Rückert, Christian, and Kalinowski, Jörn. 2013. “Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032”. BMC Genomics 14 (1): 714.
Mentz, A., Neshat, A., Pfeifer-Sancar, K., Pühler, A., Rückert, C., and Kalinowski, J. (2013). Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032. BMC Genomics 14:714.
Mentz, A., et al., 2013. Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032. BMC Genomics, 14(1): 714.
A. Mentz, et al., “Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032”, BMC Genomics, vol. 14, 2013, : 714.
Mentz, A., Neshat, A., Pfeifer-Sancar, K., Pühler, A., Rückert, C., Kalinowski, J.: Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032. BMC Genomics. 14, : 714 (2013).
Mentz, Almut, Neshat, Armin, Pfeifer-Sancar, Katharina, Pühler, Alfred, Rückert, Christian, and Kalinowski, Jörn. “Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032”. BMC Genomics 14.1 (2013): 714.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:19Z
MD5 Prüfsumme
0cae169fe55c2beba8cc3b2c641a8f9f


32 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Comparative genomics of Mycobacterium mucogenicum and Mycobacterium neoaurum clade members emphasizing tRNA and non-coding RNA.
Behra PRK, Pettersson BMF, Das S, Dasgupta S, Kirsebom LA., BMC Evol Biol 19(1), 2019
PMID: 31215393
Native promoters of Corynebacterium glutamicum and its application in L-lysine production.
Shang X, Chai X, Lu X, Li Y, Zhang Y, Wang G, Zhang C, Liu S, Zhang Y, Ma J, Wen T., Biotechnol Lett 40(2), 2018
PMID: 29164417
Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery.
Baritugo KA, Kim HT, David Y, Choi JI, Hong SH, Jeong KJ, Choi JH, Joo JC, Park SJ., Appl Microbiol Biotechnol 102(9), 2018
PMID: 29557518
Iron and Zinc Regulate Expression of a Putative ABC Metal Transporter in Corynebacterium diphtheriae.
Peng ED, Oram DM, Battistel MD, Lyman LR, Freedberg DI, Schmitt MP., J Bacteriol 200(10), 2018
PMID: 29507090
Core non-coding RNAs of Piscirickettsia salmonis.
Segovia C, Arias-Carrasco R, Yañez AJ, Maracaja-Coutinho V, Santander J., PLoS One 13(5), 2018
PMID: 29768466
Genome improvement of the acarbose producer Actinoplanes sp. SE50/110 and annotation refinement based on RNA-seq analysis.
Wolf T, Schneiker-Bekel S, Neshat A, Ortseifen V, Wibberg D, Zemke T, Pühler A, Kalinowski J., J Biotechnol 251(), 2017
PMID: 28427920
A Genome-Wide Prediction and Identification of Intergenic Small RNAs by Comparative Analysis in Mesorhizobium huakuii 7653R.
Fuli X, Wenlong Z, Xiao W, Jing Z, Baohai H, Zhengzheng Z, Bin-Guang M, Youguo L., Front Microbiol 8(), 2017
PMID: 28943874
Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species.
Oliveira A, Oliveira LC, Aburjaile F, Benevides L, Tiwari S, Jamal SB, Silva A, Figueiredo HCP, Ghosh P, Portela RW, De Carvalho Azevedo VA, Wattam AR., Front Microbiol 8(), 2017
PMID: 29075239
Regulons of global transcription factors in Corynebacterium glutamicum.
Toyoda K, Inui M., Appl Microbiol Biotechnol 100(1), 2016
PMID: 26496920
Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi).
Cleto S, Jensen JV, Wendisch VF, Lu TK., ACS Synth Biol 5(5), 2016
PMID: 26829286
The small 6C RNA of Corynebacterium glutamicum is involved in the SOS response.
Pahlke J, Dostálová H, Holátko J, Degner U, Bott M, Pátek M, Polen T., RNA Biol 13(9), 2016
PMID: 27362471
Rho and RNase play a central role in FMN riboswitch regulation in Corynebacterium glutamicum.
Takemoto N, Tanaka Y, Inui M., Nucleic Acids Res 43(1), 2015
PMID: 25477389
Complete genome sequence of Streptomyces lividans TK24.
Rückert C, Albersmeier A, Busche T, Jaenicke S, Winkler A, Friðjónsson ÓH, Hreggviðsson GÓ, Lambert C, Badcock D, Bernaerts K, Anne J, Economou A, Kalinowski J., J Biotechnol 199(), 2015
PMID: 25680930
Small RNA Deep-Sequencing Analyses Reveal a New Regulator of Virulence in Agrobacterium fabrum C58.
Dequivre M, Diel B, Villard C, Sismeiro O, Durot M, Coppée JY, Nesme X, Vial L, Hommais F., Mol Plant Microbe Interact 28(5), 2015
PMID: 26024442
Improving the genome annotation of the acarbose producer Actinoplanes sp. SE50/110 by sequencing enriched 5'-ends of primary transcripts.
Schwientek P, Neshat A, Kalinowski J, Klein A, Rückert C, Schneiker-Bekel S, Wendler S, Stoye J, Pühler A., J Biotechnol 190(), 2014
PMID: 24642337
ReadXplorer--visualization and analysis of mapped sequences.
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A., Bioinformatics 30(16), 2014
PMID: 24790157
Differential RNA-seq: the approach behind and the biological insight gained.
Sharma CM, Vogel J., Curr Opin Microbiol 19(), 2014
PMID: 25024085
Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis.
Jäger D, Förstner KU, Sharma CM, Santangelo TJ, Reeve JN., BMC Genomics 15(), 2014
PMID: 25127548
Ms1, a novel sRNA interacting with the RNA polymerase core in mycobacteria.
Hnilicová J, Jirát Matějčková J, Šiková M, Pospíšil J, Halada P, Pánek J, Krásný L., Nucleic Acids Res 42(18), 2014
PMID: 25217589
IdsA is the major geranylgeranyl pyrophosphate synthase involved in carotenogenesis in Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF., FEBS J 281(21), 2014
PMID: 25181035
Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique.
Pfeifer-Sancar K, Mentz A, Rückert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24341750

86 References

Daten bereitgestellt von Europe PubMed Central.

Corynebacterium glutamicum as a potent biocatalyst for the bioconversion of pentose sugars to value-added products.
Gopinath V, Murali A, Dhar KS, Nampoothiri KM., Appl. Microbiol. Biotechnol. 93(1), 2011
PMID: 22094976
Industrial production of amino acids by coryneform bacteria.
Hermann T., J. Biotechnol. 104(1-3), 2003
PMID: 12948636
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
The Corynebacterium glutamicum genome: features and impacts on biotechnological processes.
Ikeda M, Nakagawa S., Appl. Microbiol. Biotechnol. 62(2-3), 2003
PMID: 12743753
The transcriptional regulatory network of the amino acid producer Corynebacterium glutamicum.
Brinkrolf K, Brune I, Tauch A., J. Biotechnol. 129(2), 2006
PMID: 17227685
CoryneRegNet 6.0--Updated database content, new analysis methods and novel features focusing on community demands.
Pauling J, Rottger R, Tauch A, Azevedo V, Baumbach J., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22080556
Deep sequencing-based identification of small non-coding RNAs in Streptomyces coelicolor.
Vockenhuber MP, Sharma CM, Statt MG, Schmidt D, Xu Z, Dietrich S, Liesegang H, Mathews DH, Suess B., RNA Biol 8(3), 2011
PMID: 21521948
Chromosomally encoded small antisense RNA in Corynebacterium glutamicum.
Zemanova M, Kaderabkova P, Patek M, Knoppova M, Silar R, Nesvera J., FEMS Microbiol. Lett. 279(2), 2007
PMID: 18093135
Rfam 11.0: 10 years of RNA families.
Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A., Nucleic Acids Res. 41(Database issue), 2012
PMID: 23125362
fRNAdb: a platform for mining/annotating functional RNA candidates from non-coding RNA sequences.
Kin T, Yamada K, Terai G, Okida H, Yoshinari Y, Ono Y, Kojima A, Kimura Y, Komori T, Asai K., Nucleic Acids Res. 35(Database issue), 2006
PMID: 17099231
sRNAdb: a small non-coding RNA database for gram-positive bacteria.
Pischimarov J, Kuenne C, Billion A, Hemberger J, Cemic F, Chakraborty T, Hain T., BMC Genomics 13(), 2012
PMID: 22883983
Bacterial RNA thermometers: molecular zippers and switches.
Kortmann J, Narberhaus F., Nat. Rev. Microbiol. 10(4), 2012
PMID: 22421878
Molecular recognition and function of riboswitches.
Serganov A, Patel DJ., Curr. Opin. Struct. Biol. 22(3), 2012
PMID: 22579413
Regulation by small RNAs in bacteria: expanding frontiers.
Storz G, Vogel J, Wassarman KM., Mol. Cell 43(6), 2011
PMID: 21925377
Regulatory RNAs in bacteria.
Waters LS, Storz G., Cell 136(4), 2009
PMID: 19239884
6S RNA: a small RNA regulator of transcription.
Wassarman KM., Curr. Opin. Microbiol. 10(2), 2007
PMID: 17383220
Genome-wide antisense transcription drives mRNA processing in bacteria.
Lasa I, Toledo-Arana A, Dobin A, Villanueva M, de los Mozos IR, Vergara-Irigaray M, Segura V, Fagegaltier D, Penades JR, Valle J, Solano C, Gingeras TR., Proc. Natl. Acad. Sci. U.S.A. 108(50), 2011
PMID: 22123973
Identification of small RNAs in diverse bacterial species.
Livny J, Waldor MK., Curr. Opin. Microbiol. 10(2), 2007
PMID: 17383222
Fast and reliable prediction of noncoding RNAs.
Washietl S, Hofacker IL, Stadler PF., Proc. Natl. Acad. Sci. U.S.A. 102(7), 2005
PMID: 15665081
sRNAPredict: an integrative computational approach to identify sRNAs in bacterial genomes.
Livny J, Fogel MA, Davis BM, Waldor MK., Nucleic Acids Res. 33(13), 2005
PMID: 16049021
RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria.
Vogel J, Bartels V, Tang TH, Churakov G, Slagter-Jager JG, Huttenhofer A, Wagner EG., Nucleic Acids Res. 31(22), 2003
PMID: 14602901
Experimental approaches for the discovery and characterization of regulatory small RNA.
Sharma CM, Vogel J., Curr. Opin. Microbiol. 12(5), 2009
PMID: 19758836

AUTHOR UNKNOWN, 0
Discovery of bacterial sRNAs by high-throughput sequencing.
Liu JM, Camilli A., Methods Mol. Biol. 733(), 2011
PMID: 21431763
The primary transcriptome of the major human pathogen Helicobacter pylori.
Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermuller J, Reinhardt R, Stadler PF, Vogel J., Nature 464(7286), 2010
PMID: 20164839
RNA-Seq: a revolutionary tool for transcriptomics.
Wang Z, Gerstein M, Snyder M., Nat. Rev. Genet. 10(1), 2009
PMID: 19015660
FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing.
Underwood JG, Uzilov AV, Katzman S, Onodera CS, Mainzer JE, Mathews DH, Lowe TM, Salama SR, Haussler D., Nat. Methods 7(12), 2010
PMID: 21057495
Bacterial sRNAs: regulation in stress.
Hoe CH, Raabe CA, Rozhdestvensky TS, Tang TH., Int. J. Med. Microbiol. 303(5), 2013
PMID: 23660175
Exact and complete short-read alignment to microbial genomes using Graphics Processing Unit programming.
Blom J, Jakobi T, Doppmeier D, Jaenicke S, Kalinowski J, Stoye J, Goesmann A., Bioinformatics 27(10), 2011
PMID: 21450712
Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR.
Ao W, Gaudet J, Kent WJ, Muttumu S, Mango SE., Science 305(5691), 2004
PMID: 15375261
Assessing computational tools for the discovery of transcription factor binding sites.
Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov AV, Frith MC, Fu Y, Kent WJ, Makeev VJ, Mironov AA, Noble WS, Pavesi G, Pesole G, Regnier M, Simonis N, Sinha S, Thijs G, van Helden J, Vandenbogaert M, Weng Z, Workman C, Ye C, Zhu Z., Nat. Biotechnol. 23(1), 2005
PMID: 15637633
Sigma factors and promoters in Corynebacterium glutamicum.
Patek M, Nesvera J., J. Biotechnol. 154(2-3), 2011
PMID: 21277915
Functional analysis of sigH expression in Corynebacterium glutamicum.
Kim TH, Kim HJ, Park JS, Kim Y, Kim P, Lee HS., Biochem. Biophys. Res. Commun. 331(4), 2005
PMID: 15883048
WebLogo: a sequence logo generator.
Crooks GE, Hon G, Chandonia JM, Brenner SE., Genome Res. 14(6), 2004
PMID: 15173120

AUTHOR UNKNOWN, 0
New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control.
Barrick JE, Corbino KA, Winkler WC, Nahvi A, Mandal M, Collins J, Lee M, Roth A, Sudarsan N, Jona I, Wickiser JK, Breaker RR., Proc. Natl. Acad. Sci. U.S.A. 101(17), 2004
PMID: 15096624
A probabilistic method for identifying start codons in bacterial genomes.
Suzek BE, Ermolaeva MD, Schreiber M, Salzberg SL., Bioinformatics 17(12), 2001
PMID: 11751220
eggNOG: automated construction and annotation of orthologous groups of genes.
Jensen LJ, Julien P, Kuhn M, von Mering C, Muller J, Doerks T, Bork P., Nucleic Acids Res. 36(Database issue), 2007
PMID: 17942413
Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response.
Kocan M, Schaffer S, Ishige T, Sorger-Herrmann U, Wendisch VF, Bott M., J. Bacteriol. 188(2), 2006
PMID: 16385062

Woo HM., 2010

Wessel M., 2004
Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays.
Jochmann N, Kurze AK, Czaja LF, Brinkrolf K, Brune I, Huser AT, Hansmeier N, Puhler A, Borovok I, Tauch A., Microbiology (Reading, Engl.) 155(Pt 5), 2009
PMID: 19372162
PcaO positively regulates pcaHG of the beta-ketoadipate pathway in Corynebacterium glutamicum.
Zhao KX, Huang Y, Chen X, Wang NX, Liu SJ., J. Bacteriol. 192(6), 2010
PMID: 20081038
FarR, a putative regulator of amino acid metabolism in Corynebacterium glutamicum.
Hanssler E, Muller T, Jessberger N, Volzke A, Plassmeier J, Kalinowski J, Kramer R, Burkovski A., Appl. Microbiol. Biotechnol. 76(3), 2007
PMID: 17483938
Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes.
Weinberg Z, Wang JX, Bogue J, Yang J, Corbino K, Moy RH, Breaker RR., Genome Biol. 11(3), 2010
PMID: 20230605
RNAshapes: an integrated RNA analysis package based on abstract shapes.
Steffen P, Voss B, Rehmsmeier M, Reeder J, Giegerich R., Bioinformatics 22(4), 2005
PMID: 16357029
Sequence-based analysis uncovers an abundance of non-coding RNA in the total transcriptome of Mycobacterium tuberculosis.
Arnvig KB, Comas I, Thomson NR, Houghton J, Boshoff HI, Croucher NJ, Rose G, Perkins TT, Parkhill J, Dougan G, Young DB., PLoS Pathog. 7(11), 2011
PMID: 22072964
Identification of small RNAs in Mycobacterium smegmatis using heterologous Hfq.
Li SK, Ng PK, Qin H, Lau JK, Lau JP, Tsui SK, Chan TF, Lau TC., RNA 19(1), 2012
PMID: 23169799
Multiple small RNAs identified in Mycobacterium bovis BCG are also expressed in Mycobacterium tuberculosis and Mycobacterium smegmatis.
DiChiara JM, Contreras-Martinez LM, Livny J, Smith D, McDonough KA, Belfort M., Nucleic Acids Res. 38(12), 2010
PMID: 20181675
A genome-wide survey of sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti.
Schluter JP, Reinkensmeier J, Daschkey S, Evguenieva-Hackenberg E, Janssen S, Janicke S, Becker JD, Giegerich R, Becker A., BMC Genomics 11(), 2010
PMID: 20398411
Bacterial antisense RNAs: how many are there, and what are they doing?
Thomason MK, Storz G., Annu. Rev. Genet. 44(), 2010
PMID: 20707673
The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages.
Mraheil MA, Billion A, Mohamed W, Mukherjee K, Kuenne C, Pischimarov J, Krawitz C, Retey J, Hartsch T, Chakraborty T, Hain T., Nucleic Acids Res. 39(10), 2011
PMID: 21278422
GadY, a small-RNA regulator of acid response genes in Escherichia coli.
Opdyke JA, Kang JG, Storz G., J. Bacteriol. 186(20), 2004
PMID: 15466020
Transcriptional interference--a crash course.
Shearwin KE, Callen BP, Egan JB., Trends Genet. 21(6), 2005
PMID: 15922833
Identification of a furA cis antisense RNA in the cyanobacterium Anabaena sp. PCC 7120.
Hernandez JA, Muro-Pastor AM, Flores E, Bes MT, Peleato ML, Fillat MF., J. Mol. Biol. 355(3), 2005
PMID: 16324715
6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter.
Barrick JE, Sudarsan N, Weinberg Z, Ruzzo WL, Breaker RR., RNA 11(5), 2005
PMID: 15811922
CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea.
Marraffini LA, Sontheimer EJ., Nat. Rev. Genet. 11(3), 2010
PMID: 20125085
Comparative analysis of two complete Corynebacterium ulcerans genomes and detection of candidate virulence factors.
Trost E, Al-Dilaimi A, Papavasiliou P, Schneider J, Viehoever P, Burkovski A, Soares SC, Almeida SS, Dorella FA, Miyoshi A, Azevedo V, Schneider MP, Silva A, Santos CS, Santos LS, Sabbadini P, Dias AA, Hirata R Jr, Mattos-Guaraldi AL, Tauch A., BMC Genomics 12(), 2011
PMID: 21801446
A genome-wide analysis of small regulatory RNAs in the human pathogen group A Streptococcus.
Perez N, Trevino J, Liu Z, Ho SC, Babitzke P, Sumby P., PLoS ONE 4(11), 2009
PMID: 19888332
Identification of small RNAs in Mycobacterium tuberculosis.
Arnvig KB, Young DB., Mol. Microbiol. 73(3), 2009
PMID: 19555452
High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum.
Jungwirth B, Sala C, Kohl TA, Uplekar S, Baumbach J, Cole ST, Puhler A, Tauch A., Microbiology (Reading, Engl.) 159(Pt 1), 2012
PMID: 23103979
Small non-coding RNAs in Streptomyces coelicolor.
Swiercz JP, Hindra , Bobek J, Bobek J, Haiser HJ, Di Berardo C, Tjaden B, Elliot MA., Nucleic Acids Res. 36(22), 2008
PMID: 19008244
Biology of trans-translation.
Keiler KC., Annu. Rev. Microbiol. 62(), 2008
PMID: 18557701
Comparative sequence analysis of tmRNA.
Zwieb C, Wower I, Wower J., Nucleic Acids Res. 27(10), 1999
PMID: 10219077
Corynebacterium glutamicum contains 3-deoxy-D-arabino-heptulosonate 7-phosphate synthases that display novel biochemical features.
Liu YJ, Li PP, Zhao KX, Wang BJ, Jiang CY, Drake HL, Liu SJ., Appl. Environ. Microbiol. 74(17), 2008
PMID: 18621870
Mauve: multiple alignment of conserved genomic sequence with rearrangements.
Darling AC, Mau B, Blattner FR, Perna NT., Genome Res. 14(7), 2004
PMID: 15231754
Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen Agrobacterium tumefaciens.
Wilms I, Overloper A, Nowrousian M, Sharma CM, Narberhaus F., RNA Biol 9(4), 2012
PMID: 22336765
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24138339
PubMed | Europe PMC

Suchen in

Google Scholar