Categorization of two-photon microscopy images of human cartilage into states of osteoarthritis

Bergmann T, Maeder U, Fiebich M, Dickob M, Nattkemper TW, Anselmetti D (2013)
Osteoarthritis And Cartilage 21(8): 1074-1082.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
Objective: The degeneration of articular cartilage is part of the clinical syndrome of osteoarthritis (OA) and one of the most common causes of pain and disability in middle-aged and older people(1). However, the objective detection of an initial state of OA is still challenging. In order to categorize cartilage into states of OA, an algorithm is presented which offers objective categorization on the basis of two-photon laser-scanning microscopy (TPLSM) images. Methods: The algorithm is based on morphological characteristics of the images and results in a topographical visualization. This paper describes the algorithm and shows the result of a categorization of human cartilage samples. Results: The resulting map of the analysis of TPLSM images can be divided into areas which correspond to the grades of the Outerbridge-Categorization. The algorithm is able to differentiate the samples in coincidence with the macroscopic impression. Conclusion: The method is promising for early OA detection and categorization. In order to achieve a higher benefit for the physician the method must be transferred to an endoscopic setup for an application in surgery. (C) 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Stichworte
Wavelet; Self-organizing maps; Cartilage; Osteoarthritis; Categorization; 2-Photon microscopy; transformation
Erscheinungsjahr
2013
Zeitschriftentitel
Osteoarthritis And Cartilage
Band
21
Ausgabe
8
Seite(n)
1074-1082
ISSN
1063-4584
Page URI
https://pub.uni-bielefeld.de/record/2625914

Zitieren

Bergmann T, Maeder U, Fiebich M, Dickob M, Nattkemper TW, Anselmetti D. Categorization of two-photon microscopy images of human cartilage into states of osteoarthritis. Osteoarthritis And Cartilage. 2013;21(8):1074-1082.
Bergmann, T., Maeder, U., Fiebich, M., Dickob, M., Nattkemper, T. W., & Anselmetti, D. (2013). Categorization of two-photon microscopy images of human cartilage into states of osteoarthritis. Osteoarthritis And Cartilage, 21(8), 1074-1082. doi:10.1016/j.joca.2013.04.019
Bergmann, Thorsten, Maeder, U., Fiebich, M., Dickob, M., Nattkemper, Tim Wilhelm, and Anselmetti, Dario. 2013. “Categorization of two-photon microscopy images of human cartilage into states of osteoarthritis”. Osteoarthritis And Cartilage 21 (8): 1074-1082.
Bergmann, T., Maeder, U., Fiebich, M., Dickob, M., Nattkemper, T. W., and Anselmetti, D. (2013). Categorization of two-photon microscopy images of human cartilage into states of osteoarthritis. Osteoarthritis And Cartilage 21, 1074-1082.
Bergmann, T., et al., 2013. Categorization of two-photon microscopy images of human cartilage into states of osteoarthritis. Osteoarthritis And Cartilage, 21(8), p 1074-1082.
T. Bergmann, et al., “Categorization of two-photon microscopy images of human cartilage into states of osteoarthritis”, Osteoarthritis And Cartilage, vol. 21, 2013, pp. 1074-1082.
Bergmann, T., Maeder, U., Fiebich, M., Dickob, M., Nattkemper, T.W., Anselmetti, D.: Categorization of two-photon microscopy images of human cartilage into states of osteoarthritis. Osteoarthritis And Cartilage. 21, 1074-1082 (2013).
Bergmann, Thorsten, Maeder, U., Fiebich, M., Dickob, M., Nattkemper, Tim Wilhelm, and Anselmetti, Dario. “Categorization of two-photon microscopy images of human cartilage into states of osteoarthritis”. Osteoarthritis And Cartilage 21.8 (2013): 1074-1082.

38 References

Daten bereitgestellt von Europe PubMed Central.

Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects
Hunziker, Osteoarthritis Cartilage 10(), 2010
Measurement of structure (disease) modification on osteoarthritis
Altman, Osteoarthritis Cartilage 12(), 2004
Osteoarthritis cartilage histopathology: grading and staging.
Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, Salter D, van den Berg WB., Osteoarthr. Cartil. 14(1), 2005
PMID: 16242352
Design and conduct of clinical trials in patients with osteoarthritis: recommendations from a task force of the Osteoarthritis Research Society. Results from a workshop.
Altman R, Brandt K, Hochberg M, Moskowitz R, Bellamy N, Bloch DA, Buckwalter J, Dougados M, Ehrlich G, Lequesne M, Lohmander S, Murphy WA Jr, Rosario-Jansen T, Schwartz B, Trippel S., Osteoarthr. Cartil. 4(4), 1996
PMID: 11048620
High-resolution MRI detects cartilage swelling at the early stages of experimental osteoarthritis.
Calvo E, Palacios I, Delgado E, Ruiz-Cabello J, Hernandez P, Sanchez-Pernaute O, Egido J, Herrero-Beaumont G., Osteoarthr. Cartil. 9(5), 2001
PMID: 11467895

Pawley, 2006
Nonlinear magic: multiphoton microscopy in the biosciences.
Zipfel WR, Williams RM, Webb WW., Nat. Biotechnol. 21(11), 2003
PMID: 14595365
Two-photon microscopy of cells and tissue.
Rubart M., Circ. Res. 95(12), 2004
PMID: 15591237
Photon upmanship: why multiphoton imaging is more than a gimmick.
Denk W, Svoboda K., Neuron 18(3), 1997
PMID: 9115730
Separation of healthy and early osteoarthritis by automatic quantification of cartilage homogeneity.
Qazi AA, Folkesson J, Pettersen PC, Karsdal MA, Christiansen C, Dam EB., Osteoarthr. Cartil. 15(10), 2007
PMID: 17493841

Collins, 1949
The etiology of chondromalacia patellae
Outerbridge, J Bone Joint Surg Br 43-B(), 1961
Arthroscopic diagnosis and classification of articular cartilage lesions
Boes, Deutsche Zeitschrift für Sportmedizin 54(), 2003
Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hips. II. Correlation of morphology with biochemical and metabolic data
Mankin, J Bone Joint Surg Am 53A(), 1971
Deep tissue two-photon microscopy.
Helmchen F, Denk W., Nat. Methods 2(12), 2005
PMID: 16299478
Degradation of the cartilage matrix associated with changes in chondrocytes in osteoarthrosis. Assessment by loss of background fluorescence and immunodetection of matrix components
Gibson, J Orthop Res 19(), 2001
Multifocal, multiphoton microscopy: new detection methods and biological applications
Martini, 2006
2-Photon laser scanning microscopy on native cartilage and collagen-membranes for tissue-engineering
Martini, Proc SPIE 6089(), 2006
[Arthrosis--histology and pathogenetic approaches]
Sulzbacher I., Radiologe 40(12), 2000
PMID: 11197930
A method for linking computed image features to histological semantics in neuropathology
Lessmann, J Biomed Inform 40(), 2007
A machine vision system for automated non-invasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification
Wie, BMC Bioinform 9(), 2008
Multivariate image mining
Herold, Wiley Interdisc Rev: Data mining and Knowledge discovery 1(), 2011
Texture analysis and classification with tree-structured wavelet transform.
Chang T, Kuo CJ., IEEE Trans Image Process 2(4), 1993
PMID: 18296228
Statistical texture characterization from discrete wavelet representation
van, IEEE Trans Image Process 8(), 1993
Filtering for texture classification: a comparative study
Randen, IEEE Trans Pattern Anal Mach Intell 21(), 1999
Observer reliability in the arthroscopic classification of osteoarthritis of the knee
Brismar, J Bone Joint Surg 84-B(), 2001
Multisensor image fusion using the wavelet transform
Li, Graphical Models Image Process 57(), 1995
A texture analysis approach to corrosion image classification
Livans, Microsc Microanal Microstruct 7(), 1996
Self-organized formation of topologically correct feature maps
Kohonen, Biol Cybern 43(), 1982
Self-organising maps as a relevance feedback technique in content-based image retrieval
Laaksonen, Pattern Anal Appl 23(), 2001

Kohonen, 2001
Fiber-optic fluorescence imaging.
Flusberg BA, Cocker ED, Piyawattanametha W, Jung JC, Cheung EL, Schnitzer MJ., Nat. Methods 2(12), 2005
PMID: 16299479
In situ structural and microangiographic assessment of human skin lesions with high-speed OCT.
Blatter C, Weingast J, Alex A, Grajciar B, Wieser W, Drexler W, Huber R, Leitgeb RA., Biomed Opt Express 3(10), 2012
PMID: 23082302
Arthroscopic optical coherence tomography in diagnosis of early arthritis
O'Malley, Minim Invasive Surg 2011(), 2011
Endoscopic OCT with forward-looking probe: clinical studies in urology and gastroenterology
Zagaynoca, J Biophoton 1(), 2008
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23680876
PubMed | Europe PMC

Suchen in

Google Scholar