MeltDB 2.0 - Advances of the metabolomics software system

Kessler N, Bonte A, Langenkämper G, Niehaus K, Goesmann A, Nattkemper TW (2013)
Bioinformatics 29(19): 2452-2459.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Motivation: The research area metabolomics achieved tremendous popularity and development in the last couple of years. Due to its unique interdisciplinarity it requires to combine knowledge from various scientific disciplines. Advances in the high-throughput technology and the consequently growing quality and quantity of data put new demands on applied analytical and computational methods. Exploration of finally generated and analyzed datasets furthermore relies on powerful tools for data mining and visualization. Results: To cover and keep up with these requirements, we have created MeltDB 2.0, a next generation web application adressing storage, sharing, standardization, integration and analysis of metabolomics experiments. New features improve both, efficiency and effectivity of the entire processing pipeline of chromatographic raw data from pre-processing to the derivation of new bioloigcal knowledge. Firstly, the generation of high quality metabolic data sets has been vastly simplified. Secondly, the new statistics tool box allows to investigate these data sets according to a wide spectrum of scientific and explorative questions. Availability: The system is publicly available at https://meltdb.cebitec.unibielefeld. de. A login is required but freely available.
Page URI


Kessler N, Bonte A, Langenkämper G, Niehaus K, Goesmann A, Nattkemper TW. MeltDB 2.0 - Advances of the metabolomics software system. Bioinformatics. 2013;29(19):2452-2459.
Kessler, N., Bonte, A., Langenkämper, G., Niehaus, K., Goesmann, A., & Nattkemper, T. W. (2013). MeltDB 2.0 - Advances of the metabolomics software system. Bioinformatics, 29(19), 2452-2459. doi:10.1093/bioinformatics/btt414
Kessler, N., Bonte, A., Langenkämper, G., Niehaus, K., Goesmann, A., and Nattkemper, T. W. (2013). MeltDB 2.0 - Advances of the metabolomics software system. Bioinformatics 29, 2452-2459.
Kessler, N., et al., 2013. MeltDB 2.0 - Advances of the metabolomics software system. Bioinformatics, 29(19), p 2452-2459.
N. Kessler, et al., “MeltDB 2.0 - Advances of the metabolomics software system”, Bioinformatics, vol. 29, 2013, pp. 2452-2459.
Kessler, N., Bonte, A., Langenkämper, G., Niehaus, K., Goesmann, A., Nattkemper, T.W.: MeltDB 2.0 - Advances of the metabolomics software system. Bioinformatics. 29, 2452-2459 (2013).
Kessler, Nikolas, Bonte, Anja, Langenkämper, Georg, Niehaus, Karsten, Goesmann, Alexander, and Nattkemper, Tim Wilhelm. “MeltDB 2.0 - Advances of the metabolomics software system”. Bioinformatics 29.19 (2013): 2452-2459.

23 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Micro-organisms growing on rapeseed during storage affect the profile of volatile compounds of virgin rapeseed oil.
Wagner C, Bonte A, Brühl L, Niehaus K, Bednarz H, Matthäus B., J Sci Food Agric 98(6), 2018
PMID: 28960362
Missing Value Imputation Approach for Mass Spectrometry-based Metabolomics Data.
Wei R, Wang J, Su M, Jia E, Chen S, Chen T, Ni Y., Sci Rep 8(1), 2018
PMID: 29330539
GSimp: A Gibbs sampler based left-censored missing value imputation approach for metabolomics studies.
Wei R, Wang J, Jia E, Chen T, Ni Y, Jia W., PLoS Comput Biol 14(1), 2018
PMID: 29385130
Metabolomics assisted metabolic network modeling and network wide analysis of metabolites in microbiology.
Wang J, Wang C, Liu H, Qi H, Chen H, Wen J., Crit Rev Biotechnol 38(7), 2018
PMID: 29683004
FELLA: an R package to enrich metabolomics data.
Picart-Armada S, Fernández-Albert F, Vinaixa M, Yanes O, Perera-Lluna A., BMC Bioinformatics 19(1), 2018
PMID: 30577788
Mixture model normalization for non-targeted gas chromatography/mass spectrometry metabolomics data.
Reisetter AC, Muehlbauer MJ, Bain JR, Nodzenski M, Stevens RD, Ilkayeva O, Metzger BE, Newgard CB, Lowe WL, Scholtens DM., BMC Bioinformatics 18(1), 2017
PMID: 28153035
Network Marker Selection for Untargeted LC-MS Metabolomics Data.
Cai Q, Alvarez JA, Kang J, Yu T., J Proteome Res 16(3), 2017
PMID: 28168878
compMS2Miner: An Automatable Metabolite Identification, Visualization, and Data-Sharing R Package for High-Resolution LC-MS Data Sets.
Edmands WM, Petrick L, Barupal DK, Scalbert A, Wilson MJ, Wickliffe JK, Rappaport SM., Anal Chem 89(7), 2017
PMID: 28225587
Navigating freely-available software tools for metabolomics analysis.
Spicer R, Salek RM, Moreno P, Cañueto D, Steinbeck C., Metabolomics 13(9), 2017
PMID: 28890673
Systems and synthetic biology perspective of the versatile plant-pathogenic and polysaccharide-producing bacterium Xanthomonas campestris.
Schatschneider S, Schneider J, Blom J, Létisse F, Niehaus K, Goesmann A, Vorhölter FJ., Microbiology 163(8), 2017
PMID: 28795660
Null diffusion-based enrichment for metabolomics data.
Picart-Armada S, Fernández-Albert F, Vinaixa M, Rodríguez MA, Aivio S, Stracker TH, Yanes O, Perera-Lluna A., PLoS One 12(12), 2017
PMID: 29211807
Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis.
Xia J, Wishart DS., Curr Protoc Bioinformatics 55(), 2016
PMID: 27603023
MarVis-Pathway: integrative and exploratory pathway analysis of non-targeted metabolomics data.
Kaever A, Landesfeind M, Feussner K, Mosblech A, Heilmann I, Morgenstern B, Feussner I, Meinicke P., Metabolomics 11(3), 2015
PMID: 25972773
Learning to Classify Organic and Conventional Wheat - A Machine Learning Driven Approach Using the MeltDB 2.0 Metabolomics Analysis Platform.
Kessler N, Bonte A, Albaum SP, Mäder P, Messmer M, Goesmann A, Niehaus K, Langenkämper G, Nattkemper TW., Front Bioeng Biotechnol 3(), 2015
PMID: 25853128
Carotta: Revealing Hidden Confounder Markers in Metabolic Breath Profiles.
Hauschild AC, Frisch T, Baumbach JI, Baumbach J., Metabolites 5(2), 2015
PMID: 26065494
metaMS: an open-source pipeline for GC-MS-based untargeted metabolomics.
Wehrens R, Weingart G, Mattivi F., J Chromatogr B Analyt Technol Biomed Life Sci 966(), 2014
PMID: 24656939
Method validation strategies involved in non-targeted metabolomics.
Naz S, Vallejo M, García A, Barbas C., J Chromatogr A 1353(), 2014
PMID: 24811151
Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner-Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis.
Schatschneider S, Huber C, Neuweger H, Watt TF, Pühler A, Eisenreich W, Wittmann C, Niehaus K, Vorhölter FJ., Mol Biosyst 10(10), 2014
PMID: 25072918

27 References

Daten bereitgestellt von Europe PubMed Central.

Controlling the false discovery rate: a practical and powerful approach to multiple testing
Benjamini Y, Hochberg Y., 1995
Potential of metabolomics as a functional genomics tool.
Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P, Roessner-Tunali U, Beale MH, Trethewey RN, Lange BM, Wurtele ES, Sumner LW., Trends Plant Sci. 9(9), 2004
PMID: 15337491
Decomposing metabolomic isotope patterns
Böcker S., 2006
New, unified nomenclature for chromatography
Ettre L., 1994
Rich internet applications the next stage of application development
Farrell J, Nezlek G., 2007
Metabolomics--the link between genotypes and phenotypes.
Fiehn O., Plant Mol. Biol. 48(1-2), 2002
PMID: 11860207

Hastie T., 2009
A simple sequentially rejective multiple test procedure
Holm S., 1979

Juan YF., 2003
GMD@CSB.DB: the Golm Metabolome Database.
Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D., Bioinformatics 21(8), 2004
PMID: 15613389


Lee M., 2003

Marchini JL., 2010
MeltDB: a software platform for the analysis and integration of metabolomics experiment data.
Neuweger H, Albaum SP, Dondrup M, Persicke M, Watt T, Niehaus K, Stoye J, Goesmann A., Bioinformatics 24(23), 2008
PMID: 18765459
Visualizing post genomics data-sets on customized pathway maps by ProMeTra-aeration-dependent gene expression and metabolism of Corynebacterium glutamicum as an example.
Neuweger H, Persicke M, Albaum SP, Bekel T, Dondrup M, Huser AT, Winnebald J, Schneider J, Kalinowski J, Goesmann A., BMC Syst Biol 3(), 2009
PMID: 19698148
Five years of progress in the Standardization of Proteomics Data 4th Annual Spring Workshop of the HUPO-Proteomics Standards Initiative April 23-25, 2007 Ecole Nationale Superieure (ENS), Lyon, France.
Orchard S, Montechi-Palazzi L, Deutsch EW, Binz PA, Jones AR, Paton N, Pizarro A, Creasy DM, Wojcik J, Hermjakob H., Proteomics 7(19), 2007
PMID: 17907277
A common open representation of mass spectrometry data and its application to proteomics research.
Pedrioli PG, Eng JK, Hubley R, Vogelzang M, Deutsch EW, Raught B, Pratt B, Nilsson E, Angeletti RH, Apweiler R, Cheung K, Costello CE, Hermjakob H, Huang S, Julian RK, Kapp E, McComb ME, Oliver SG, Omenn G, Paton NW, Simpson R, Smith R, Taylor CF, Zhu W, Aebersold R., Nat. Biotechnol. 22(11), 2004
PMID: 15529173
MSEA: metabolite set enrichment analysis in the MeltDB metabolomics software platform: metabolic profiling of Corynebacterium glutamicum as an example
Persicke M., 2011


Shneiderman B, Plaisant C., 2004
Highly sensitive feature detection for high resolution LC/MS.
Tautenhahn R, Bottcher C, Neumann S., BMC Bioinformatics 9(), 2008
PMID: 19040729
MetaboAnalyst: a web server for metabolomic data analysis and interpretation.
Xia J, Psychogios N, Young N, Wishart DS., Nucleic Acids Res. 37(Web Server issue), 2009
PMID: 19429898


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 23918246
PubMed | Europe PMC

Suchen in

Google Scholar