Comparative Genomics of 12 Strains of Erwinia amylovora Identifies a Pan-Genome with a Large Conserved Core

Mann RA, Smits THM, Bühlmann A, Blom J, Goesmann A, Frey JE, Plummer KM, Beer SV, Luck J, Duffy B, Rodoni B (2013)
PLOS ONE 8(2): e55644.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Mann, Rachel A; Smits, Theo H M; Bühlmann, Andreas; Blom, JochenUniBi; Goesmann, AlexanderUniBi ; Frey, Jürg E; Plummer, Kim M; Beer, Steven V; Luck, Joanne; Duffy, Brion; Rodoni, Brendan
Abstract / Bemerkung
The plant pathogen Erwinia amylovora can be divided into two host-specific groupings; strains infecting a broad range of hosts within the Rosaceae subfamily Spiraeoideae (e.g., Malus, Pyrus, Crataegus, Sorbus) and strains infecting Rubus (raspberries and blackberries). Comparative genomic analysis of 12 strains representing distinct populations (e.g., geographic, temporal, host origin) of E. amylovora was used to describe the pan-genome of this major pathogen. The pan-genome contains 5751 coding sequences and is highly conserved relative to other phytopathogenic bacteria comprising on average 89% conserved, core genes. The chromosomes of Spiraeoideae-infecting strains were highly homogeneous, while greater genetic diversity was observed between Spiraeoideae- and Rubus-infecting strains (and among individual Rubus-infecting strains), the majority of which was attributed to variable genomic islands. Based on genomic distance scores and phylogenetic analysis, the Rubus-infecting strain ATCC BAA-2158 was genetically more closely related to the Spiraeoideae-infecting strains of E. amylovora than it was to the other Rubus-infecting strains. Analysis of the accessory genomes of Spiraeoideae- and Rubus-infecting strains has identified putative host-specific determinants including variation in the effector protein HopX1(Ea) and a putative secondary metabolite pathway only present in Rubus-infecting strains.
Page URI


Mann RA, Smits THM, Bühlmann A, et al. Comparative Genomics of 12 Strains of Erwinia amylovora Identifies a Pan-Genome with a Large Conserved Core. PLOS ONE. 2013;8(2): e55644.
Mann, R. A., Smits, T. H. M., Bühlmann, A., Blom, J., Goesmann, A., Frey, J. E., Plummer, K. M., et al. (2013). Comparative Genomics of 12 Strains of Erwinia amylovora Identifies a Pan-Genome with a Large Conserved Core. PLOS ONE, 8(2), e55644. doi:10.1371/journal.pone.0055644
Mann, Rachel A, Smits, Theo H M, Bühlmann, Andreas, Blom, Jochen, Goesmann, Alexander, Frey, Jürg E, Plummer, Kim M, et al. 2013. “Comparative Genomics of 12 Strains of Erwinia amylovora Identifies a Pan-Genome with a Large Conserved Core”. PLOS ONE 8 (2): e55644.
Mann, R. A., Smits, T. H. M., Bühlmann, A., Blom, J., Goesmann, A., Frey, J. E., Plummer, K. M., Beer, S. V., Luck, J., Duffy, B., et al. (2013). Comparative Genomics of 12 Strains of Erwinia amylovora Identifies a Pan-Genome with a Large Conserved Core. PLOS ONE 8:e55644.
Mann, R.A., et al., 2013. Comparative Genomics of 12 Strains of Erwinia amylovora Identifies a Pan-Genome with a Large Conserved Core. PLOS ONE, 8(2): e55644.
R.A. Mann, et al., “Comparative Genomics of 12 Strains of Erwinia amylovora Identifies a Pan-Genome with a Large Conserved Core”, PLOS ONE, vol. 8, 2013, : e55644.
Mann, R.A., Smits, T.H.M., Bühlmann, A., Blom, J., Goesmann, A., Frey, J.E., Plummer, K.M., Beer, S.V., Luck, J., Duffy, B., Rodoni, B.: Comparative Genomics of 12 Strains of Erwinia amylovora Identifies a Pan-Genome with a Large Conserved Core. PLOS ONE. 8, : e55644 (2013).
Mann, Rachel A, Smits, Theo H M, Bühlmann, Andreas, Blom, Jochen, Goesmann, Alexander, Frey, Jürg E, Plummer, Kim M, Beer, Steven V, Luck, Joanne, Duffy, Brion, and Rodoni, Brendan. “Comparative Genomics of 12 Strains of Erwinia amylovora Identifies a Pan-Genome with a Large Conserved Core”. PLOS ONE 8.2 (2013): e55644.

36 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Recombination of ecologically and evolutionarily significant loci maintains genetic cohesion in the Pseudomonas syringae species complex.
Dillon MM, Thakur S, Almeida RND, Wang PW, Weir BS, Guttman DS., Genome Biol 20(1), 2019
PMID: 30606234
A genome-wide analysis of desferrioxamine mediated iron uptake in Erwinia spp. reveals genes exclusive of the Rosaceae infecting strains.
Polsinelli I, Borruso L, Caliandro R, Triboli L, Esposito A, Benini S., Sci Rep 9(1), 2019
PMID: 30808981
Transcriptional response of Erwinia amylovora to copper shock: in vivo role of the copA gene.
Águila-Clares B, Castiblanco LF, Quesada JM, Penyalver R, Carbonell J, López MM, Marco-Noales E, Sundin GW., Mol Plant Pathol 19(1), 2018
PMID: 27862834
Comparative genomics of Spiraeoideae-infecting Erwinia amylovora strains provides novel insight to genetic diversity and identifies the genetic basis of a low-virulence strain.
Zeng Q, Cui Z, Wang J, Childs KL, Sundin GW, Cooley DR, Yang CH, Garofalo E, Eaton A, Huntley RB, Yuan X, Schultes NP., Mol Plant Pathol 19(7), 2018
PMID: 29178620
Fire blight host-pathogen interaction: proteome profiles of Erwinia amylovora infecting apple rootstocks.
Holtappels M, Noben JP, Van Dijck P, Valcke R., Sci Rep 8(1), 2018
PMID: 30076380
Genome sequencing and assessment of plant growth-promoting properties of a Serratia marcescens strain isolated from vermicompost.
Matteoli FP, Passarelli-Araujo H, Reis RJA, da Rocha LO, de Souza EM, Aravind L, Olivares FL, Venancio TM., BMC Genomics 19(1), 2018
PMID: 30326830
Origin and Evolution of the Kiwifruit Canker Pandemic.
McCann HC, Li L, Liu Y, Li D, Pan H, Zhong C, Rikkerink EHA, Templeton MD, Straub C, Colombi E, Rainey PB, Huang H., Genome Biol Evol 9(4), 2017
PMID: 28369338
Comparative Genomics and Transcriptional Analysis of Flavobacterium columnare Strain ATCC 49512.
Tekedar HC, Karsi A, Reddy JS, Nho SW, Kalindamar S, Lawrence ML., Front Microbiol 8(), 2017
PMID: 28469601
The pangenome of the genus Clostridium.
Udaondo Z, Duque E, Ramos JL., Environ Microbiol 19(7), 2017
PMID: 28321969
Conservation of Erwinia amylovora pathogenicity-relevant genes among Erwinia genomes.
Borruso L, Salomone-Stagni M, Polsinelli I, Schmitt AO, Benini S., Arch Microbiol 199(10), 2017
PMID: 28695265
Role of the type VI secretion systems during disease interactions of Erwinia amylovora with its plant host.
Kamber T, Pothier JF, Pelludat C, Rezzonico F, Duffy B, Smits THM., BMC Genomics 18(1), 2017
PMID: 28818038
Microevolution Analysis of Bacillus coahuilensis Unveils Differences in Phosphorus Acquisition Strategies and Their Regulation.
Gómez-Lunar Z, Hernández-González I, Rodríguez-Torres MD, Souza V, Olmedo-Álvarez G., Front Microbiol 7(), 2016
PMID: 26903955
Comparative Genome Analysis Provides Insights into the Pathogenicity of Flavobacterium psychrophilum.
Castillo D, Christiansen RH, Dalsgaard I, Madsen L, Espejo R, Middelboe M., PLoS One 11(4), 2016
PMID: 27071075
An Integrated Metabolomic and Genomic Mining Workflow To Uncover the Biosynthetic Potential of Bacteria.
Maansson M, Vynne NG, Klitgaard A, Nybo JL, Melchiorsen J, Nguyen DD, Sanchez LM, Ziemert N, Dorrestein PC, Andersen MR, Gram L., mSystems 1(3), 2016
PMID: 27822535
Emergence of a New Population of Rathayibacter toxicus: An Ecologically Complex, Geographically Isolated Bacterium.
Arif M, Busot GY, Mann R, Rodoni B, Liu S, Stack JP., PLoS One 11(5), 2016
PMID: 27219107
Virulence Factors of Erwinia amylovora: A Review.
Piqué N, Miñana-Galbis D, Merino S, Tomás JM., Int J Mol Sci 16(6), 2015
PMID: 26057748
The bacterial pangenome as a new tool for analysing pathogenic bacteria.
Rouli L, Merhej V, Fournier PE, Raoult D., New Microbes New Infect 7(), 2015
PMID: 26442149
Genomes of 'Candidatus Liberibacter solanacearum' Haplotype A from New Zealand and the United States Suggest Significant Genome Plasticity in the Species.
Thompson SM, Johnson CP, Lu AY, Frampton RA, Sullivan KL, Fiers MW, Crowhurst RN, Pitman AR, Scott IA, Wen A, Gudmestad NC, Smith GR., Phytopathology 105(7), 2015
PMID: 25822188
Draft Genomes, Phylogenetic Reconstruction, and Comparative Genomics of Two Novel Cohabiting Bacterial Symbionts Isolated from Frankliniella occidentalis.
Facey PD, Méric G, Hitchings MD, Pachebat JA, Hegarty MJ, Chen X, Morgan LV, Hoeppner JE, Whitten MM, Kirk WD, Dyson PJ, Sheppard SK, Del Sol R., Genome Biol Evol 7(8), 2015
PMID: 26185096
Phylogeography and population structure of the biologically invasive phytopathogen Erwinia amylovora inferred using minisatellites.
Bühlmann A, Dreo T, Rezzonico F, Pothier JF, Smits TH, Ravnikar M, Frey JE, Duffy B., Environ Microbiol 16(7), 2014
PMID: 24112873
Whole-Genome Sequencing of Erwinia amylovora Strains from Mexico Detects Single Nucleotide Polymorphisms in rpsL Conferring Streptomycin Resistance and in the avrRpt2 Effector Altering Host Interactions.
Smits TH, Guerrero-Prieto VM, Hernández-Escarcega G, Blom J, Goesmann A, Rezzonico F, Duffy B, Stockwell VO., Genome Announc 2(1), 2014
PMID: 24459281
The dynamic nature of genomes across the tree of life.
Oliverio AM, Katz LA., Genome Biol Evol 6(3), 2014
PMID: 24500971
Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts.
De Maayer P, Chan WY, Rubagotti E, Venter SN, Toth IK, Birch PR, Coutinho TA., BMC Genomics 15(), 2014
PMID: 24884520
A novel plasmid pEA68 of Erwinia amylovora and the description of a new family of plasmids.
Ismail E, Blom J, Bultreys A, Ivanović M, Obradović A, van Doorn J, Bergsma-Vlami M, Maes M, Willems A, Duffy B, Stockwell VO, Smits TH, Puławska J., Arch Microbiol 196(12), 2014
PMID: 25178659
Census-based rapid and accurate metagenome taxonomic profiling.
Shamsaddini A, Pan Y, Johnson WE, Krampis K, Shcheglovitova M, Simonyan V, Zanne A, Mazumder R., BMC Genomics 15(), 2014
PMID: 25336203
Phylogenetic position and virulence apparatus of the pear flower necrosis pathogen Erwinia piriflorinigrans CFBP 5888T as assessed by comparative genomics.
Smits TH, Rezzonico F, López MM, Blom J, Goesmann A, Frey JE, Duffy B., Syst Appl Microbiol 36(7), 2013
PMID: 23726521
Inter- and intra-specific pan-genomes of Borrelia burgdorferi sensu lato: genome stability and adaptive radiation.
Mongodin EF, Casjens SR, Bruno JF, Xu Y, Drabek EF, Riley DR, Cantarel BL, Pagan PE, Hernandez YA, Vargas LC, Dunn JJ, Schutzer SE, Fraser CM, Qiu WG, Luft BJ., BMC Genomics 14(), 2013
PMID: 24112474

70 References

Daten bereitgestellt von Europe PubMed Central.

Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp.
Smits TH, Rezzonico F, Kamber T, Blom J, Goesmann A, Frey JE, Duffy B., Mol. Plant Microbe Interact. 23(4), 2010
PMID: 20192826
Exploring diversity among Spanish strains of Erwinia amylovora and possible infection sources.
Donat V, Biosca EG, Penalver J, Lopez MM., J. Appl. Microbiol. 103(5), 2007
PMID: 17953575

Genetic characterization of Erwinia amylovora strains by amplified fragment length polymorphism.
Rico A, Ortiz-Barredo A, Ritter E, Murillo J., J. Appl. Microbiol. 96(2), 2004
PMID: 14723691
Characterization and differentiation of Irish Erwinia amylovora isolates
Lipopolysaccharide biosynthesis genes discriminate between Rubus- and Spiraeoideae-infective genotypes of Erwinia amylovora.
Rezzonico F, Braun-Kiewnick A, Mann RA, Rodoni B, Goesmann A, Duffy B, Smits TH., Mol. Plant Pathol. 13(8), 2012
PMID: 22583486
Occurrence of fire blight on thornless blackberry in Illinois
Infection, carbohydrate utiliation, and protein profiles of apple, pear, and raspberry isolates of Erwinia amylovora
The specificity of PCR-based protocols for detection of Erwinia amylovora
Influence of amylovoran production on virulence of Erwinia amylovora and a different amylovoran structure in E. amylovora isolates from Rubus.
Maes M, Orye K, Bobev S, Devreese B, Beeumen Jvan, Bruyn Ade, Busson R, Herdewijn P, Morreel K, Messens E., Eur. J. Plant Pathol. 107(8), 2001
PMID: IND23288755
Characterization of Erwinia amylovora strains from different hosts and geographical areas
Eop1 from a Rubus strain of Erwinia amylovora functions as a host-range limiting factor.
Asselin JE, Bonasera JM, Kim JF, Oh CS, Beer SV., Phytopathology 101(8), 2011
PMID: 21469934
The microbial pan-genome.
Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R., Curr. Opin. Genet. Dev. 15(6), 2005
PMID: 16185861
Comparative genomics: the bacterial pan-genome
Genome sequence of an Erwinia amylovora strain with pathogenicity restricted to Rubus plants.
Powney R, Smits TH, Sawbridge T, Frey B, Blom J, Frey JE, Plummer KM, Beer SV, Luck J, Duffy B, Rodoni B., J. Bacteriol. 193(3), 2010
PMID: 21131493
A genomic distance based on MUM indicates discontinuity between most bacterial species and genera.
Deloger M, El Karoui M, Petit MA., J. Bacteriol. 191(1), 2008
PMID: 18978054
Evolutionary insights from Erwinia amylovora genomics.
Smits TH, Rezzonico F, Duffy B., J. Biotechnol. 155(1), 2010
PMID: 21040749
EDGAR: a software framework for the comparative analysis of prokaryotic genomes.
Blom J, Albaum SP, Doppmeier D, Puhler A, Vorholter FJ, Zakrzewski M, Goesmann A., BMC Bioinformatics 10(), 2009
PMID: 19457249
Detecting genomic islands using bioinformatics approaches.
Langille MG, Hsiao WW, Brinkman FS., Nat. Rev. Microbiol. 8(5), 2010
PMID: 20395967
Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5.
Mavrodi DV, Loper JE, Paulsen IT, Thomashow LS., BMC Microbiol. 9(), 2009
PMID: 19144133
Genome watch: breaking the ICE.
Seth-Smith H, Croucher NJ., Nat. Rev. Microbiol. 7(5), 2009
PMID: 19369947
The role of Bacteroides conjugative transposons in the dissemination of antibiotic resistance genes.
Whittle G, Shoemaker NB, Salyers AA., Cell. Mol. Life Sci. 59(12), 2002
PMID: 12568330
Restriction and modification systems.
Wilson GG, Murray NE., Annu. Rev. Genet. 25(), 1991
PMID: 1812816
A novel host-specific restriction system associated with DNA backbone S-modification in Salmonella.
Xu T, Yao F, Zhou X, Deng Z, You D., Nucleic Acids Res. 38(20), 2010
PMID: 20627870
The Rcs phosphorelay system is essential for pathogenicity in Erwinia amylovora.
Wang D, Korban SS, Zhao Y., Mol. Plant Pathol. 10(2), 2009
PMID: 19236575
Comparative analysis of the Hrp pathogenicity island of Rubus- and Spiraeoideae-infecting Erwinia amylovora strains identifies the IT region as a remnant of an integrative conjugative element.
Mann RA, Blom J, Buhlmann A, Plummer KM, Beer SV, Luck JE, Goesmann A, Frey JE, Rodoni BC, Duffy B, Smits TH., Gene 504(1), 2012
PMID: 22579880
Identification of Erwinia amylovora genes induced during infection of immature pear tissue.
Zhao Y, Blumer SE, Sundin GW., J. Bacteriol. 187(23), 2005
PMID: 16291682
HopX1 in Erwinia amylovora functions as an avirulence protein in apple and is regulated by HrpL.
Bocsanczy AM, Schneider DJ, DeClerck GA, Cartinhour S, Beer SV., J. Bacteriol. 194(3), 2011
PMID: 22123252
Functional analysis of the N terminus of the Erwinia amylovora secreted effector DspA/E reveals features required for secretion, translocation, and binding to the chaperone DspB/F
Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163T and comparative genomic insights into plant pathogenicity.
Smits TH, Jaenicke S, Rezzonico F, Kamber T, Goesmann A, Frey JE, Duffy B., BMC Genomics 11(), 2010
PMID: 20047678
Erwinia amylovora novel plasmid pEI70: complete sequence, biogeography, and role in aggressiveness in the fire blight phytopathogen.
Llop P, Cabrefiga J, Smits TH, Dreo T, Barbe S, Pulawska J, Bultreys A, Blom J, Duffy B, Montesinos E, Lopez MM., PLoS ONE 6(12), 2011
PMID: 22174857
Characterization of a ubiquitous plasmid in Erwinia amylovora
Functions and origin of plasmids in Erwinia species that are pathogenic to or epiphytically associated with pome fruit trees
Genetic diversity among Erwinia amylovora’s ubiquitous plasmid pEA29
Genomic and functional characterization of the modular broad-host-range RA3 plasmid, the archetype of the IncU group.
Kulinska A, Czeredys M, Hayes F, Jagura-Burdzy G., Appl. Environ. Microbiol. 74(13), 2008
PMID: 18502921
Molecular signature of differential virulence in natural isolates of Erwinia amylovora.
Wang D, Korban SS, Zhao Y., Phytopathology 100(2), 2010
PMID: 20055653
Development of joint application strategies for two microbial gene finders.
McHardy AC, Goesmann A, Puhler A, Meyer F., Bioinformatics 20(10), 2004
PMID: 14988122
Microbial gene identification using interpolated Markov models.
Salzberg SL, Delcher AL, Kasif S, White O., Nucleic Acids Res. 26(2), 1998
PMID: 9421513
CRITICA: coding region identification tool invoking comparative analysis.
Badger JH, Olsen GJ, Woese CR., Mol. Biol. Evol. 16(4), 1999
PMID: 10331277
GenDB--an open source genome annotation system for prokaryote genomes.
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A., Nucleic Acids Res. 31(8), 2003
PMID: 12682369
The KEGG databases at GenomeNet.
Kanehisa M, Goto S, Kawashima S, Nakaya A., Nucleic Acids Res. 30(1), 2002
PMID: 11752249
mGenomeSubtractor: a web-based tool for parallel in silico subtractive hybridization analysis of multiple bacterial genomes.
Shao Y, He X, Harrison EM, Tai C, Ou HY, Rajakumar K, Deng Z., Nucleic Acids Res. 38(Web Server issue), 2010
PMID: 20435682
Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
Towards a genome-based taxonomy for prokaryotes.
Konstantinidis KT, Tiedje JM., J. Bacteriol. 187(18), 2005
PMID: 16159757
antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences.
Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R., Nucleic Acids Res. 39(Web Server issue), 2011
PMID: 21672958
Le feu bactérien en France. II. - Caractères des souches d’Erwinia amylovora (Burril) Winslow et al., 1920, isolées du foyer franco-belge

Identification by PCR analysis on plasmid pEA29 of isolates of Erwinia amylovora responsible of an outbreak in Central Europe
The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates.
Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricke WF, Gajer P, Crabtree J, Sebaihia M, Thomson NR, Chaudhuri R, Henderson IR, Sperandio V, Ravel J., J. Bacteriol. 190(20), 2008
PMID: 18676672
Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence.
Remenant B, Coupat-Goutaland B, Guidot A, Cellier G, Wicker E, Allen C, Fegan M, Pruvost O, Elbaz M, Calteau A, Salvignol G, Mornico D, Mangenot S, Barbe V, Medigue C, Prior P., BMC Genomics 11(), 2010
PMID: 20550686
Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates.
Baltrus DA, Nishimura MT, Romanchuk A, Chang JH, Mukhtar MS, Cherkis K, Roach J, Grant SR, Jones CD, Dangl JL., PLoS Pathog. 7(7), 2011
PMID: 21799664
Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species.
Donati C, Hiller NL, Tettelin H, Muzzi A, Croucher NJ, Angiuoli SV, Oggioni M, Dunning Hotopp JC, Hu FZ, Riley DR, Covacci A, Mitchell TJ, Bentley SD, Kilian M, Ehrlich GD, Rappuoli R, Moxon ER, Masignani V., Genome Biol. 11(10), 2010
PMID: 21034474
Comparative supragenomic analyses among the pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Haemophilus influenzae using a modification of the finite supragenome model.
Boissy R, Ahmed A, Janto B, Earl J, Hall BG, Hogg JS, Pusch GD, Hiller LN, Powell E, Hayes J, Yu S, Kathju S, Stoodley P, Post JC, Ehrlich GD, Hu FZ., BMC Genomics 12(), 2011
PMID: 21489287
CAMBer: an approach to support comparative analysis of multiple bacterial strains

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 23409014
PubMed | Europe PMC

Suchen in

Google Scholar