Explorative Learning of Inverse Models: a Theoretical Perspective

Rolf M, Steil JJ (2014)
Neurocomputing 131(Special Issue: New Challenges in Neural Computation): 2-14.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
We investigate the role of redundancy for exploratory learning of inverse functions, where an agent learns to achieve goals by performing actions and observing outcomes. We present an analysis of linear redundancy and investigate goal-directed exploration approaches, which are empirically successful, but hardly theorized except negative results for special cases, and prove convergence to the optimal solution. We show that the learning curves of such processes are intrinsically low-dimensional and S-shaped, which explains previous empirical findings, and finally compare our results to non-linear domains.
Stichworte
CoR-Lab Publication
Erscheinungsjahr
2014
Zeitschriftentitel
Neurocomputing
Band
131
Ausgabe
Special Issue: New Challenges in Neural Computation
Seite(n)
2-14
ISSN
0925-2312
Page URI
https://pub.uni-bielefeld.de/record/2547888

Zitieren

Rolf M, Steil JJ. Explorative Learning of Inverse Models: a Theoretical Perspective. Neurocomputing. 2014;131(Special Issue: New Challenges in Neural Computation):2-14.
Rolf, M., & Steil, J. J. (2014). Explorative Learning of Inverse Models: a Theoretical Perspective. Neurocomputing, 131(Special Issue: New Challenges in Neural Computation), 2-14. doi:10.1016/j.neucom.2013.04.050
Rolf, M., and Steil, J. J. (2014). Explorative Learning of Inverse Models: a Theoretical Perspective. Neurocomputing 131, 2-14.
Rolf, M., & Steil, J.J., 2014. Explorative Learning of Inverse Models: a Theoretical Perspective. Neurocomputing, 131(Special Issue: New Challenges in Neural Computation), p 2-14.
M. Rolf and J.J. Steil, “Explorative Learning of Inverse Models: a Theoretical Perspective”, Neurocomputing, vol. 131, 2014, pp. 2-14.
Rolf, M., Steil, J.J.: Explorative Learning of Inverse Models: a Theoretical Perspective. Neurocomputing. 131, 2-14 (2014).
Rolf, Matthias, and Steil, Jochen J. “Explorative Learning of Inverse Models: a Theoretical Perspective”. Neurocomputing 131.Special Issue: New Challenges in Neural Computation (2014): 2-14.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Suchen in

Google Scholar