Involvement of bacterial TonB-dependent signaling in the generation of an oligogalacturonide damage-associated molecular pattern from plant cell walls exposed to Xanthomonas campestris pv. campestris pectate lyases

Vorhölter F-J, Wiggerich H-G, Scheidle H, Sidhu VK, Mrozek K, Küster H, Pühler A, Niehaus K (2012)
BMC Microbiology 12(1): 239.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Vorhölter, Frank-JörgUniBi; Wiggerich, Heinrich-Günter; Scheidle, Heiko; Sidhu, Vishaldeep Kaur; Mrozek, KalinaUniBi; Küster, Helge; Pühler, AlfredUniBi ; Niehaus, KarstenUniBi
Abstract / Bemerkung
Background Efficient perception of attacking pathogens is essential for plants. Plant defense is evoked by molecules termed elicitors. Endogenous elicitors or damage-associated molecular patterns (DAMPs) originate from plant materials upon injury or pathogen activity. While there are comparably well-characterized examples for DAMPs, often oligogalacturonides (OGAs), generated by the activity of fungal pathogens, endogenous elicitors evoked by bacterial pathogens have been rarely described. In particular, the signal perception and transduction processes involved in DAMP generation are poorly characterized. Results A mutant strain of the phytopathogenic bacterium Xanthomonas campestris pv. campestris deficient in exbD2, which encodes a component of its unusual elaborate TonB system, had impaired pectate lyase activity and caused no visible symptoms for defense on the non-host plant pepper (Capsicum annuum). A co-incubation of X. campestris pv. campestris with isolated cell wall material from C. annuum led to the release of compounds which induced an oxidative burst in cell suspension cultures of the non-host plant. Lipopolysaccharides and proteins were ruled out as elicitors by polymyxin B and heat treatment, respectively. After hydrolysis with trifluoroacetic acid and subsequent HPAE chromatography, the elicitor preparation contained galacturonic acid, the monosaccharide constituent of pectate. OGAs were isolated from this crude elicitor preparation by HPAEC and tested for their biological activity. While small OGAs were unable to induce an oxidative burst, the elicitor activity in cell suspension cultures of the non-host plants tobacco and pepper increased with the degree of polymerization (DP). Maximal elicitor activity was observed for DPs exceeding 8. In contrast to the X. campestris pv. campestris wild type B100, the exbD2 mutant was unable to generate elicitor activity from plant cell wall material or from pectin. Conclusions To our knowledge, this is the second report on a DAMP generated by bacterial features. The generation of the OGA elicitor is embedded in a complex exchange of signals within the framework of the plant-microbe interaction of C. annuum and X. campestris pv. campestris. The bacterial TonB-system is essential for the substrate-induced generation of extracellular pectate lyase activity. This is the first demonstration that a TonB-system is involved in bacterial trans-envelope signaling in the context of a pathogenic interaction with a plant.
BMC Microbiology
Page URI


Vorhölter F-J, Wiggerich H-G, Scheidle H, et al. Involvement of bacterial TonB-dependent signaling in the generation of an oligogalacturonide damage-associated molecular pattern from plant cell walls exposed to Xanthomonas campestris pv. campestris pectate lyases. BMC Microbiology. 2012;12(1): 239.
Vorhölter, F. - J., Wiggerich, H. - G., Scheidle, H., Sidhu, V. K., Mrozek, K., Küster, H., Pühler, A., et al. (2012). Involvement of bacterial TonB-dependent signaling in the generation of an oligogalacturonide damage-associated molecular pattern from plant cell walls exposed to Xanthomonas campestris pv. campestris pectate lyases. BMC Microbiology, 12(1), 239. doi:10.1186/1471-2180-12-239
Vorhölter, F. - J., Wiggerich, H. - G., Scheidle, H., Sidhu, V. K., Mrozek, K., Küster, H., Pühler, A., and Niehaus, K. (2012). Involvement of bacterial TonB-dependent signaling in the generation of an oligogalacturonide damage-associated molecular pattern from plant cell walls exposed to Xanthomonas campestris pv. campestris pectate lyases. BMC Microbiology 12:239.
Vorhölter, F.-J., et al., 2012. Involvement of bacterial TonB-dependent signaling in the generation of an oligogalacturonide damage-associated molecular pattern from plant cell walls exposed to Xanthomonas campestris pv. campestris pectate lyases. BMC Microbiology, 12(1): 239.
F.-J. Vorhölter, et al., “Involvement of bacterial TonB-dependent signaling in the generation of an oligogalacturonide damage-associated molecular pattern from plant cell walls exposed to Xanthomonas campestris pv. campestris pectate lyases”, BMC Microbiology, vol. 12, 2012, : 239.
Vorhölter, F.-J., Wiggerich, H.-G., Scheidle, H., Sidhu, V.K., Mrozek, K., Küster, H., Pühler, A., Niehaus, K.: Involvement of bacterial TonB-dependent signaling in the generation of an oligogalacturonide damage-associated molecular pattern from plant cell walls exposed to Xanthomonas campestris pv. campestris pectate lyases. BMC Microbiology. 12, : 239 (2012).
Vorhölter, Frank-Jörg, Wiggerich, Heinrich-Günter, Scheidle, Heiko, Sidhu, Vishaldeep Kaur, Mrozek, Kalina, Küster, Helge, Pühler, Alfred, and Niehaus, Karsten. “Involvement of bacterial TonB-dependent signaling in the generation of an oligogalacturonide damage-associated molecular pattern from plant cell walls exposed to Xanthomonas campestris pv. campestris pectate lyases”. BMC Microbiology 12.1 (2012): 239.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

14 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Comparative transcription profiling of two fermentation cultures of Xanthomonas campestris pv. campestris B100 sampled in the growth and in the stationary phase.
Alkhateeb RS, Vorhölter FJ, Steffens T, Rückert C, Ortseifen V, Hublik G, Niehaus K, Pühler A., Appl Microbiol Biotechnol 102(15), 2018
PMID: 29858955
Glycans as Modulators of Plant Defense Against Filamentous Pathogens.
Chaliha C, Rugen MD, Field RA, Kalita E., Front Plant Sci 9(), 2018
PMID: 30022987
Refined annotation of the complete genome of the phytopathogenic and xanthan producing Xanthomonas campestris pv. campestris strain B100 based on RNA sequence data.
Alkhateeb RS, Rückert C, Rupp O, Pucker B, Hublik G, Wibberg D, Niehaus K, Pühler A, Vorhölter FJ., J Biotechnol 253(), 2017
PMID: 28506932
Systems and synthetic biology perspective of the versatile plant-pathogenic and polysaccharide-producing bacterium Xanthomonas campestris.
Schatschneider S, Schneider J, Blom J, Létisse F, Niehaus K, Goesmann A, Vorhölter FJ., Microbiology 163(8), 2017
PMID: 28795660
Using Ecology, Physiology, and Genomics to Understand Host Specificity in Xanthomonas.
Jacques MA, Arlat M, Boulanger A, Boureau T, Carrère S, Cesbron S, Chen NW, Cociancich S, Darrasse A, Denancé N, Fischer-Le Saux M, Gagnevin L, Koebnik R, Lauber E, Noël LD, Pieretti I, Portier P, Pruvost O, Rieux A, Robène I, Royer M, Szurek B, Verdier V, Vernière C., Annu Rev Phytopathol 54(), 2016
PMID: 27296145
Comparative Genomics of Pathogenic and Nonpathogenic Strains of Xanthomonas arboricola Unveil Molecular and Evolutionary Events Linked to Pathoadaptation.
Cesbron S, Briand M, Essakhi S, Gironde S, Boureau T, Manceau C, Fischer-Le Saux M, Jacques MA., Front Plant Sci 6(), 2015
PMID: 26734033
Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays.
Trouvelot S, Héloir MC, Poinssot B, Gauthier A, Paris F, Guillier C, Combier M, Trdá L, Daire X, Adrian M., Front Plant Sci 5(), 2014
PMID: 25408694
Establishment, in silico analysis, and experimental verification of a large-scale metabolic network of the xanthan producing Xanthomonas campestris pv. campestris strain B100.
Schatschneider S, Persicke M, Watt SA, Hublik G, Pühler A, Niehaus K, Vorhölter FJ., J Biotechnol 167(2), 2013
PMID: 23395674
Dynamic protein phosphorylation during the growth of Xanthomonas campestris pv. campestris B100 revealed by a gel-based proteomics approach.
Musa YR, Bäsell K, Schatschneider S, Vorhölter FJ, Becher D, Niehaus K., J Biotechnol 167(2), 2013
PMID: 23792782

105 References

Daten bereitgestellt von Europe PubMed Central.

The plant immune system.
Jones JD, Dangl JL., Nature 444(7117), 2006
PMID: 17108957
Lamb C, Dixon RA., Annu. Rev. Plant Physiol. Plant Mol. Biol. 48(), 1997
PMID: 15012264
Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora.
Wei ZM, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV., Science 257(5066), 1992
PMID: 1621099
Harpin mediates cell aggregation in Erwinia chrysanthemi 3937.
Yap MN, Rojas CM, Yang CH, Charkowski AO., J. Bacteriol. 188(6), 2006
PMID: 16513758
The structures of syringolide-1 and syringolide-2, novel C-glycosidic elicitors from Pseudomonas syringae pv tomato
Glyco-conjugates as elicitors or suppressors of plant innate immunity.
Silipo A, Erbs G, Shinya T, Dow JM, Parrilli M, Lanzetta R, Shibuya N, Newman MA, Molinaro A., Glycobiology 20(4), 2009
PMID: 20018942
The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity.
Lotze MT, Zeh HJ, Rubartelli A, Sparvero LJ, Amoscato AA, Washburn NR, Devera ME, Liang X, Tor M, Billiar T., Immunol. Rev. 220(), 2007
PMID: 17979840
Endogenous peptide elicitors in higher plants.
Yamaguchi Y, Huffaker A., Curr. Opin. Plant Biol. 14(4), 2011
PMID: 21636314
A wound- and systemin-inducible polygalacturonase in tomato leaves.
Bergey DR, Orozco-Cardenas M, de Moura DS, Ryan CA., Proc. Natl. Acad. Sci. U.S.A. 96(4), 1999
PMID: 9990097
The sugar composition and partial structure of the self-induced endogenous elicitor from potato.
Monden T, Nakamura H, Murai A., Biochem. Biophys. Res. Commun. 215(2), 1995
PMID: 7488020
Host-Pathogen Interactions : XXII. A Galacturonic Acid Oligosaccharide from Plant Cell Walls Elicits Phytoalexins.
Nothnagel EA, McNeil M, Albersheim P, Dell A., Plant Physiol. 71(4), 1983
PMID: 16662929
Pectin activation of MAP kinase and gene expression is WAK2 dependent.
Kohorn BD, Johansen S, Shishido A, Todorova T, Martinez R, Defeo E, Obregon P., Plant J. 60(6), 2009
PMID: 19737363
A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides.
Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G., Proc. Natl. Acad. Sci. U.S.A. 107(20), 2010
PMID: 20439716

Pathogenomics of Xanthomonas: understanding bacterium-plant interactions.
Ryan RP, Vorholter FJ, Potnis N, Jones JB, Van Sluys MA, Bogdanove AJ, Dow JM., Nat. Rev. Microbiol. 9(5), 2011
PMID: 21478901
Lipopolysaccharide from Xanthomonas campestris induces defense-related gene expression in Brassica campestris.
Newman MA, Daniels MJ, Dow JM., Mol. Plant Microbe Interact. 8(5), 1995
PMID: 7579622
The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris.
Silipo A, Molinaro A, Sturiale L, Dow JM, Erbs G, Lanzetta R, Newman MA, Parrilli M., J. Biol. Chem. 280(39), 2005
PMID: 16048996
Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomonas elicit plant innate immunity: structure and activity.
Erbs G, Silipo A, Aslam S, De Castro C, Liparoti V, Flagiello A, Pucci P, Lanzetta R, Parrilli M, Molinaro A, Newman MA, Cooper RM., Chem. Biol. 15(5), 2008
PMID: 18482696
Regulation and secretion of Xanthomonas virulence factors.
Buttner D, Bonas U., FEMS Microbiol. Rev. 34(2), 2009
PMID: 19925633
TAL effectors: finding plant genes for disease and defense.
Bogdanove AJ, Schornack S, Lahaye T., Curr. Opin. Plant Biol. 13(4), 2010
PMID: 20570209
A conserved carboxylesterase is a SUPPRESSOR OF AVRBST-ELICITED RESISTANCE in Arabidopsis.
Cunnac S, Wilson A, Nuwer J, Kirik A, Baranage G, Mudgett MB., Plant Cell 19(2), 2007
PMID: 17293566
The Xanthomonas type III effector XopD targets the Arabidopsis transcription factor MYB30 to suppress plant defense.
Canonne J, Marino D, Jauneau A, Pouzet C, Briere C, Roby D, Rivas S., Plant Cell 23(9), 2011
PMID: 21917550
Functional characterization of the Xcs and Xps type II secretion systems from the plant pathogenic bacterium Xanthomonas campestris pv vesicatoria.
Szczesny R, Jordan M, Schramm C, Schulz S, Cogez V, Bonas U, Buttner D., New Phytol. 187(4), 2010
PMID: 20524995
Polygalacturonic acid trans-eliminase of Xanthomonas campestris.
Nasuno S, Starr MP., Biochem. J. 104(1), 1967
PMID: 6035509
A gene cluster in Xanthomonas campestris pv. campestris required for pathogenicity controls the excretion of polygalacturonate lyase and other enzymes
Molecular cloning of a polygalacturonate lyase gene from Xanthomonas campestris pv. campestris and role of the gene product in pathogenicity.
Dow JM, Milligan DE, Jamieson L, Barber CE, Daniels MJ., Physiol. Mol. Plant Pathol. 35(2), 1989
PMID: IND89056410
Mining Xanthomonas and Streptomyces genomes for new pectinase-encoding sequences and their heterologous expression in Escherichia coli.
Xiao Z, Boyd J, Grosse S, Beauchemin M, Coupe E, Lau PC., Appl. Microbiol. Biotechnol. 78(6), 2008
PMID: 18317750
Regulation of the pehA gene encoding the major polygalacturonase of Xanthomonas campestris by Clp and RpfF.
Hsiao YM, Zheng MH, Hu RM, Yang TC, Tseng YH., Microbiology (Reading, Engl.) 154(Pt 3), 2008
PMID: 18310017
Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp.
Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli SV, Patil PB, Van Sluys MA, Ryan RP, Meyer DF, Han SW, Aparna G, Rajaram M, Delcher AL, Phillippy AM, Puiu D, Schatz MC, Shumway M, Sommer DD, Trapnell C, Benahmed F, Dimitrov G, Madupu R, Radune D, Sullivan S, Jha G, Ishihara H, Lee SW, Pandey A, Sharma V, Sriariyanun M, Szurek B, Vera-Cruz CM, Dorman KS, Ronald PC, Verdier V, Dow JM, Sonti RV, Tsuge S, Brendel VP, Rabinowicz PD, Leach JE, White FF, Salzberg SL., J. Bacteriol. 193(19), 2011
PMID: 21784931
Comparison of the genomes of two Xanthomonas pathogens with differing host specificities.
da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA, Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos Santos M, Truffi D, Tsai SM, White FF, Setubal JC, Kitajima JP., Nature 417(6887), 2002
PMID: 12024217
Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen Xanthomonas campestris pv. campestris.
He YQ, Zhang L, Jiang BL, Zhang ZC, Xu RQ, Tang DJ, Qin J, Jiang W, Zhang X, Liao J, Cao JR, Zhang SS, Wei ML, Liang XX, Lu GT, Feng JX, Chen B, Cheng J, Tang JL., Genome Biol. 8(10), 2007
PMID: 17927820
Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris.
Qian W, Jia Y, Ren SX, He YQ, Feng JX, Lu LF, Sun Q, Ying G, Tang DJ, Tang H, Wu W, Hao P, Wang L, Jiang BL, Zeng S, Gu WY, Lu G, Rong L, Tian Y, Yao Z, Fu G, Chen B, Fang R, Qiang B, Chen Z, Zhao GP, Tang JL, He C., Genome Res. 15(6), 2005
PMID: 15899963
The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis.
Vorholter FJ, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T, Ruckert C, Schmid J, Sidhu VK, Sieber V, Tauch A, Watt SA, Weisshaar B, Becker A, Niehaus K, Puhler A., J. Biotechnol. 134(1-2), 2008
PMID: 18304669
Comparison of two Xanthomonas campestris pathovar campestris genomes revealed differences in their gene composition.
Vorholter FJ, Thias T, Meyer F, Bekel T, Kaiser O, Puhler A, Niehaus K., J. Biotechnol. 106(2-3), 2003
PMID: 14651861
Xylella fastidiosa requires polygalacturonase for colonization and pathogenicity in Vitis vinifera grapevines.
Roper MC, Greve LC, Warren JG, Labavitch JM, Kirkpatrick BC., Mol. Plant Microbe Interact. 20(4), 2007
PMID: 17427811
The Zur of Xanthomonas campestris is involved in hypersensitive response and positively regulates the expression of the hrp cluster via hrpX but not hrpG.
Huang DL, Tang DJ, Liao Q, Li XQ, He YQ, Feng JX, Jiang BL, Lu GT, Tang JL., Mol. Plant Microbe Interact. 22(3), 2009
PMID: 19245326
Mutations of ferric uptake regulator (fur) impair iron homeostasis, growth, oxidative stress survival, and virulence of Xanthomonas campestris pv. campestris.
Jittawuttipoka T, Sallabhan R, Vattanaviboon P, Fuangthong M, Mongkolsuk S., Arch. Microbiol. 192(5), 2010
PMID: 20237769
Xanthomonas campestris diffusible factor is 3-hydroxybenzoic acid and is associated with xanthomonadin biosynthesis, cell viability, antioxidant activity, and systemic invasion.
He YW, Wu J, Zhou L, Yang F, He YQ, Jiang BL, Bai L, Xu Y, Deng Z, Tang JL, Zhang LH., Mol. Plant Microbe Interact. 24(8), 2011
PMID: 21539432
Two-component signal transduction systems of Xanthomonas spp.: a lesson from genomics.
Qian W, Han ZJ, He C., Mol. Plant Microbe Interact. 21(2), 2008
PMID: 18184059
TonB system, in vivo assays and characterization.
Postle K., Meth. Enzymol. 422(), 2007
PMID: 17628143
TonB-dependent transporters: regulation, structure, and function.
Noinaj N, Guillier M, Barnard TJ, Buchanan SK., Annu. Rev. Microbiol. 64(), 2010
PMID: 20420522
Energy-coupled outer membrane transport proteins and regulatory proteins.
Braun V, Endriss F., Biometals 20(3-4), 2007
PMID: 17370038
Plant carbohydrate scavenging through tonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria.
Blanvillain S, Meyer D, Boulanger A, Lautier M, Guynet C, Denance N, Vasse J, Lauber E, Arlat M., PLoS ONE 2(2), 2007
PMID: 17311090
Identification and regulation of the N-acetylglucosamine utilization pathway of the plant pathogenic bacterium Xanthomonas campestris pv. campestris.
Boulanger A, Dejean G, Lautier M, Glories M, Zischek C, Arlat M, Lauber E., J. Bacteriol. 192(6), 2010
PMID: 20081036
Involvement of tonB-exbBD1D2 operon in infection of Xanthomonas campestris phage phi L7.
Hung CH, Yang CF, Yang CY, Tseng YH., Biochem. Biophys. Res. Commun. 302(4), 2003
PMID: 12646254
Role of TonB1 in pyoverdine-mediated signaling in Pseudomonas aeruginosa.
Shirley M, Lamont IL., J. Bacteriol. 191(18), 2009
PMID: 19592589
Alfalfa and tobacco cells react differently to chitin oligosaccharides and sinorhizobium meliloti nodulation factors
Baier R, Schiene K, Kohring B, Flaschel E, Niehaus K., Planta 210(1), 1999
PMID: 10592044
Plants have a sensitive perception system for the most conserved domain of bacterial flagellin.
Felix G, Duran JD, Volko S, Boller T., Plant J. 18(3), 1999
PMID: 10377992
Flagellin perception: a paradigm for innate immunity.
Gomez-Gomez L, Boller T., Trends Plant Sci. 7(6), 2002
PMID: 12049921
Signal perception and intracellular signal transduction in plant pathogen defense.
Nurnberger T, Wirtz W, Nennstiel D, Hahlbrock K, Jabs T, Zimmermann S, Scheel D., J. Recept. Signal Transduct. Res. 17(1-3), 1997
PMID: 9029485
Extracellular alkalinization and oxidative burst induced by fungal lyase in tobacco cells are not due to the perception of oligogalacturonide fragments
Small oligomers of galacturonic acid are endogenous suppressors of disease resistance reactions in wheat leaves
Elicitation of H2O2 production in cucumber hypocotyl segments by oligo-1,4-alpha-D-galacturonides and an oligo-beta-glucan preparation from cell walls of Phythophthora megasperma F Sp glycinea
Oligosaccharides as recognition signals for the expression of defensive genes in plants
Out of the quagmire of plant defense hypotheses.
Stamp N., Q Rev Biol 78(1), 2003
PMID: 12661508
Common infection strategies of plant and animal pathogenic bacteria.
Buttner D, Bonas U., Curr. Opin. Plant Biol. 6(4), 2003
PMID: 12873524
The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants.
Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G., Plant Cell 16(12), 2004
PMID: 15548740
Microbe-associated molecular pattern (MAMP) signatures, synergy, size and charge: influences on perception or mobility and host defence responses.
Aslam SN, Erbs G, Morrissey KL, Newman MA, Chinchilla D, Boller T, Molinaro A, Jackson RW, Cooper RM., Mol. Plant Pathol. 10(3), 2009
PMID: 19400840
TonB-dependent trans-envelope signalling: the exception or the rule?
Koebnik R., Trends Microbiol. 13(8), 2005
PMID: 15993072
Insights into the extracytoplasmic stress response of Xanthomonas campestris pv. campestris: role and regulation of {sigma}E-dependent activity.
Bordes P, Lavatine L, Phok K, Barriot R, Boulanger A, Castanie-Cornet MP, Dejean G, Lauber E, Becker A, Arlat M, Gutierrez C., J. Bacteriol. 193(1), 2010
PMID: 20971899
Pectate lyase 10A from Pseudomonas cellulosa is a modular enzyme containing a family 2a carbohydrate-binding module.
Brown IE, Mallen MH, Charnock SJ, Davies GJ, Black GW., Biochem. J. 355(Pt 1), 2001
PMID: 11256960
Carbohydrate-binding domains: multiplicity of biological roles.
Guillen D, Sanchez S, Rodriguez-Sanoja R., Appl. Microbiol. Biotechnol. 85(5), 2009
PMID: 19908036
XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection
GenDB--an open source genome annotation system for prokaryote genomes.
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A., Nucleic Acids Res. 31(8), 2003
PMID: 12682369
EDGAR: a software framework for the comparative analysis of prokaryotic genomes.
Blom J, Albaum SP, Doppmeier D, Puhler A, Vorholter FJ, Zakrzewski M, Goesmann A., BMC Bioinformatics 10(), 2009
PMID: 19457249
The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae.
Pieretti I, Royer M, Barbe V, Carrere S, Koebnik R, Cociancich S, Couloux A, Darrasse A, Gouzy J, Jacques MA, Lauber E, Manceau C, Mangenot S, Poussier S, Segurens B, Szurek B, Verdier V, Arlat M, Rott P., BMC Genomics 10(), 2009
PMID: 20017926
Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence.
Thieme F, Koebnik R, Bekel T, Berger C, Boch J, Buttner D, Caldana C, Gaigalat L, Goesmann A, Kay S, Kirchner O, Lanz C, Linke B, McHardy AC, Meyer F, Mittenhuber G, Nies DH, Niesbach-Klosgen U, Patschkowski T, Ruckert C, Rupp O, Schneiker S, Schuster SC, Vorholter FJ, Weber E, Puhler A, Bonas U, Bartels D, Kaiser O., J. Bacteriol. 187(21), 2005
PMID: 16237009
Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A.
Salzberg SL, Sommer DD, Schatz MC, Phillippy AM, Rabinowicz PD, Tsuge S, Furutani A, Ochiai H, Delcher AL, Kelley D, Madupu R, Puiu D, Radune D, Shumway M, Trapnell C, Aparna G, Jha G, Pandey A, Patil PB, Ishihara H, Meyer DF, Szurek B, Verdier V, Koebnik R, Dow JM, Ryan RP, Hirata H, Tsuyumu S, Won Lee S, Seo YS, Sriariyanum M, Ronald PC, Sonti RV, Van Sluys MA, Leach JE, White FF, Bogdanove AJ., BMC Genomics 9(), 2008
PMID: 18452608
Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity
The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics.
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B., Nucleic Acids Res. 37(Database issue), 2008
PMID: 18838391

Human resistin stimulates the pro-inflammatory cytokines TNF-alpha and IL-12 in macrophages by NF-kappaB-dependent pathway.
Silswal N, Singh AK, Aruna B, Mukhopadhyay S, Ghosh S, Ehtesham NZ., Biochem. Biophys. Res. Commun. 334(4), 2005
PMID: 16039994
Quantification of hydrogen peroxide in plant extracts by the chemoluminescence reaction with luminol
A revised medium for rapid growth and bioassays with tobacco tissue culture


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 23082751
PubMed | Europe PMC

Suchen in

Google Scholar