Evaluation of qPCR curve analysis methods for reliable biomarker discovery: Bias, resolution, precision, and implications

Ruijter JM, Pfaffl MW, Zhao S, Spiess AN, Boggy G, Blom J, Rutledge RG, Sisti D, Lievens A, De Preter K, Derveaux S, et al. (2012)
Methods. A companion to methods in enzymology (San Diego, Calif.) 59(1): 32-46.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Ruijter, Jan M; Pfaffl, Michael W; Zhao, Sheng; Spiess, Andrej N; Boggy, Gregory; Blom, JochenUniBi; Rutledge, Robert G; Sisti, Davide; Lievens, Antoon; De Preter, Katleen; Derveaux, Stefaan; Hellemans, Jan
Abstract / Bemerkung
RNA transcripts such as mRNA or microRNA are frequently used as biomarkers to determine disease state or response to therapy. Reverse transcription (RT) in combination with quantitative PCR (qPCR) has become the method of choice to quantify small amounts of such RNA molecules. In parallel with the democratization of RT-qPCR and its increasing use in biomedical research or biomarker discovery, we witnessed a growth in the number of gene expression data analysis methods. Most of these methods are based on the principle that the position of the amplification curve with respect to the cycle-axis is a measure for the initial target quantity: the later the curve, the lower the target quantity. However, most methods differ in the mathematical algorithms used to determine this position, as well as in the way the efficiency of the PCR reaction (the fold increase of product per cycle) is determined and applied in the calculations. Moreover, there is dispute about whether the PCR efficiency is constant or continuously decreasing. Together this has lead to the development of different methods to analyze amplification curves. In published comparisons of these methods, available algorithms were typically applied in a restricted or outdated way, which does not do them justice. Therefore, we aimed at development of a framework for robust and unbiased assessment of curve analysis performance whereby various publicly available curve analysis methods were thoroughly compared using a previously published large clinical data set (Vermeulen et al., 2009) [11]. The original developers of these methods applied their algorithms and are co-author on this study. We assessed the curve analysis methods' impact on transcriptional biomarker identification in terms of expression level, statistical significance, and patient-classification accuracy. The concentration series per gene, together with data sets from unpublished technical performance experiments, were analyzed in order to assess the algorithms' precision, bias, and resolution. While large differences exist between methods when considering the technical performance experiments, most methods perform relatively well on the biomarker data. The data and the analysis results per method are made available to serve as benchmark for further development and evaluation of qPCR curve analysis methods (http://qPCRDataMethods.hfrc.nl).
Methods. A companion to methods in enzymology (San Diego, Calif.)
Page URI


Ruijter JM, Pfaffl MW, Zhao S, et al. Evaluation of qPCR curve analysis methods for reliable biomarker discovery: Bias, resolution, precision, and implications. Methods. A companion to methods in enzymology (San Diego, Calif.). 2012;59(1):32-46.
Ruijter, J. M., Pfaffl, M. W., Zhao, S., Spiess, A. N., Boggy, G., Blom, J., Rutledge, R. G., et al. (2012). Evaluation of qPCR curve analysis methods for reliable biomarker discovery: Bias, resolution, precision, and implications. Methods. A companion to methods in enzymology (San Diego, Calif.), 59(1), 32-46. doi:10.1016/j.ymeth.2012.08.011
Ruijter, Jan M, Pfaffl, Michael W, Zhao, Sheng, Spiess, Andrej N, Boggy, Gregory, Blom, Jochen, Rutledge, Robert G, et al. 2012. “Evaluation of qPCR curve analysis methods for reliable biomarker discovery: Bias, resolution, precision, and implications”. Methods. A companion to methods in enzymology (San Diego, Calif.) 59 (1): 32-46.
Ruijter, J. M., Pfaffl, M. W., Zhao, S., Spiess, A. N., Boggy, G., Blom, J., Rutledge, R. G., Sisti, D., Lievens, A., De Preter, K., et al. (2012). Evaluation of qPCR curve analysis methods for reliable biomarker discovery: Bias, resolution, precision, and implications. Methods. A companion to methods in enzymology (San Diego, Calif.) 59, 32-46.
Ruijter, J.M., et al., 2012. Evaluation of qPCR curve analysis methods for reliable biomarker discovery: Bias, resolution, precision, and implications. Methods. A companion to methods in enzymology (San Diego, Calif.), 59(1), p 32-46.
J.M. Ruijter, et al., “Evaluation of qPCR curve analysis methods for reliable biomarker discovery: Bias, resolution, precision, and implications”, Methods. A companion to methods in enzymology (San Diego, Calif.), vol. 59, 2012, pp. 32-46.
Ruijter, J.M., Pfaffl, M.W., Zhao, S., Spiess, A.N., Boggy, G., Blom, J., Rutledge, R.G., Sisti, D., Lievens, A., De Preter, K., Derveaux, S., Hellemans, J., Vandesompele, J.: Evaluation of qPCR curve analysis methods for reliable biomarker discovery: Bias, resolution, precision, and implications. Methods. A companion to methods in enzymology (San Diego, Calif.). 59, 32-46 (2012).
Ruijter, Jan M, Pfaffl, Michael W, Zhao, Sheng, Spiess, Andrej N, Boggy, Gregory, Blom, Jochen, Rutledge, Robert G, Sisti, Davide, Lievens, Antoon, De Preter, Katleen, Derveaux, Stefaan, Hellemans, Jan, and Vandesompele, Jo. “Evaluation of qPCR curve analysis methods for reliable biomarker discovery: Bias, resolution, precision, and implications”. Methods. A companion to methods in enzymology (San Diego, Calif.) 59.1 (2012): 32-46.

88 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Determination of sets of covariating gene expression using graph analysis on pairwise expression ratios.
Curis E, Courtin C, Geoffroy PA, Laplanche JL, Saubaméa B, Marie-Claire C., Bioinformatics 35(2), 2019
PMID: 30010788
Identifying pathogenic variants in the Follistatin-like 1 gene (FSTL1) in patients with skeletal and atrioventricular valve disorders.
Prakash S, Mattiotti A, Sylva M, Mulder BJM, Postma AV, van den Hoff MJB., Mol Genet Genomic Med 7(4), 2019
PMID: 30722102
Considerations and quality controls when analyzing cell-free tumor DNA.
Johansson G, Andersson D, Filges S, Li J, Muth A, Godfrey TE, Ståhlberg A., Biomol Detect Quantif 17(), 2019
PMID: 30906693
In vitro evaluation of the protective effects of plant extracts against amyloid-beta peptide-induced toxicity in human neuroblastoma SH-SY5Y cells.
Sereia AL, de Oliveira MT, Baranoski A, Marques LLM, Ribeiro FM, Isolani RG, de Medeiros DC, Chierrito D, Lazarin-Bidóia D, Zielinski AAF, Novello CR, Nakamura CV, Mantovani MS, Mello JCP., PLoS One 14(2), 2019
PMID: 30763379
qPCR data analysis: Better results through iconoclasm.
Tellinghuisen J, Spiess AN., Biomol Detect Quantif 17(), 2019
PMID: 31194178
A novel data processing method CyC* for quantitative real time polymerase chain reaction minimizes cumulative error.
Zhang L, Dong R, Wei S, Zhou HC, Zhang MX, Alagarsamy K., PLoS One 14(6), 2019
PMID: 31185064
Technical aspects and recommendations for single-cell qPCR.
Ståhlberg A, Kubista M., Mol Aspects Med 59(), 2018
PMID: 28756182
Savitzky-Golay smoothing and differentiation for polymerase chain reaction quantification.
Gaudreault C, Salvas J, Sirois J., Biochem Cell Biol 96(3), 2018
PMID: 29190123
Transcriptome profiling of lentil (Lens culinaris) through the first 24 hours of Ascochyta lentis infection reveals key defence response genes.
Khorramdelazad M, Bar I, Whatmore P, Smetham G, Bhaaskaria V, Yang Y, Bai SH, Mantri N, Zhou Y, Ford R., BMC Genomics 19(1), 2018
PMID: 29385986
Dispersion Profiles and Gene Associations of Repetitive DNAs in the Euchromatin of the Beetle Tribolium castaneum.
Brajković J, Pezer Ž, Bruvo-Mađarić B, Sermek A, Feliciello I, Ugarković Đ., G3 (Bethesda) 8(3), 2018
PMID: 29311112
Differences in DNA Methylation and Functional Expression in Lactase Persistent and Non-persistent Individuals.
Leseva MN, Grand RJ, Klett H, Boerries M, Busch H, Binder AM, Michels KB., Sci Rep 8(1), 2018
PMID: 29618745
Effects of ad libitum milk replacer feeding and butyrate supplementation on behavior, immune status, and health of Holstein calves in the postnatal period.
Gerbert C, Frieten D, Koch C, Dusel G, Eder K, Stefaniak T, Bajzert J, Jawor P, Tuchscherer A, Hammon HM., J Dairy Sci 101(8), 2018
PMID: 29778472
Common and differential transcriptional responses to different models of traumatic stress exposure in rats.
Jacobson ML, Kim LA, Patro R, Rosati B, McKinnon D., Transl Psychiatry 8(1), 2018
PMID: 30139969
RNAm expression profile of cancer marker genes in HepG2 cells treated with different concentrations of a new indolin-3-one from Pseudomonas aeruginosa.
Benicio LM, Simionato AS, Novello CR, Guimarães JR, Felicidade I, de Oliveira AG, de Mello JCP, Mantovani MS, Chryssafidis AL, Andrade G, de Syllos Colus IM, de Oliveira MT., Sci Rep 8(1), 2018
PMID: 30143666
Retinoic acid signaling balances adult distal lung epithelial progenitor cell growth and differentiation.
Ng-Blichfeldt JP, Schrik A, Kortekaas RK, Noordhoek JA, Heijink IH, Hiemstra PS, Stolk J, Königshoff M, Gosens R., EBioMedicine 36(), 2018
PMID: 30236449
Factor XI deficiency enhances the pulmonary allergic response to house dust mite in mice independent of factor XII.
Stroo I, Yang J, de Boer JD, Roelofs JJ, van 't Veer C, Castellino FJ, Zeerleder S, van der Poll T., Am J Physiol Lung Cell Mol Physiol 312(2), 2017
PMID: 27913422
Exact p-values for pairwise comparison of Friedman rank sums, with application to comparing classifiers.
Eisinga R, Heskes T, Pelzer B, Te Grotenhuis M., BMC Bioinformatics 18(1), 2017
PMID: 28122501
Characterization of H type 1 and type 1 N-acetyllactosamine glycan epitopes on ovarian cancer specifically recognized by the anti-glycan monoclonal antibody mAb-A4.
Choo M, Tan HL, Ding V, Castangia R, Belgacem O, Liau B, Hartley-Tassell L, Haslam SM, Dell A, Choo A., J Biol Chem 292(15), 2017
PMID: 28167527
Practical data handling pipeline improves performance of qPCR-based circulating miRNA measurements.
de Ronde MWJ, Ruijter JM, Lanfear D, Bayes-Genis A, Kok MGM, Creemers EE, Pinto YM, Pinto-Sietsma SJ., RNA 23(5), 2017
PMID: 28202710
Neisseria meningitidis Uses Sibling Small Regulatory RNAs To Switch from Cataplerotic to Anaplerotic Metabolism.
Pannekoek Y, Huis In 't Veld RA, Schipper K, Bovenkerk S, Kramer G, Brouwer MC, van de Beek D, Speijer D, van der Ende A., MBio 8(2), 2017
PMID: 28325760
quantGenius: implementation of a decision support system for qPCR-based gene quantification.
Baebler Š, Svalina M, Petek M, Stare K, Rotter A, Pompe-Novak M, Gruden K., BMC Bioinformatics 18(1), 2017
PMID: 28545393
Ad libitum milk replacer feeding, but not butyrate supplementation, affects growth performance as well as metabolic and endocrine traits in Holstein calves.
Frieten D, Gerbert C, Koch C, Dusel G, Eder K, Kanitz E, Weitzel JM, Hammon HM., J Dairy Sci 100(8), 2017
PMID: 28601458
Association of the gut microbiota mobilome with hospital location and birth weight in preterm infants.
Ravi A, Estensmo ELF, Abée-Lund TML, Foley SL, Allgaier B, Martin CR, Claud EC, Rudi K., Pediatr Res 82(5), 2017
PMID: 28665922
Regulation of Neisseria meningitidis cytochrome bc1 components by NrrF, a Fur-controlled small noncoding RNA.
Pannekoek Y, Huis In 't Veld R, Schipper K, Bovenkerk S, Kramer G, Speijer D, van der Ende A., FEBS Open Bio 7(9), 2017
PMID: 28904860
β-Catenin Directs Nuclear Factor-κB p65 Output via CREB-Binding Protein/p300 in Human Airway Smooth Muscle.
Koopmans T, Eilers R, Menzen M, Halayko A, Gosens R., Front Immunol 8(), 2017
PMID: 28943877
Field-deployable, quantitative, rapid identification of active Ebola virus infection in unprocessed blood.
Shah K, Bentley E, Tyler A, Richards KSR, Wright E, Easterbrook L, Lee D, Cleaver C, Usher L, Burton JE, Pitman JK, Bruce CB, Edge D, Lee M, Nazareth N, Norwood DA, Moschos SA., Chem Sci 8(11), 2017
PMID: 29163915
Re-oxygenation after anoxia induces brain cell death and memory loss in the anoxia-tolerant crucian carp.
Lefevre S, Stecyk JAW, Torp MK, Løvold LY, Sørensen C, Johansen IB, Stensløkken KO, Couturier CS, Sloman KA, Nilsson GE., J Exp Biol 220(pt 21), 2017
PMID: 29093186
Amplification of nonspecific products in quantitative polymerase chain reactions (qPCR).
Ruiz-Villalba A, van Pelt-Verkuil E, Gunst QD, Ruijter JM, van den Hoff MJ., Biomol Detect Quantif 14(), 2017
PMID: 29255685
Lithium-induced gene expression alterations in two peripheral cell models of bipolar disorder.
Kittel-Schneider S, Hilscher M, Scholz CJ, Weber H, Grünewald L, Schwarz R, Chiocchetti AG, Reif A., World J Biol Psychiatry (), 2017
PMID: 29067888
Quercetin Feeding in Newborn Dairy Calves Cannot Compensate Colostrum Deprivation: Study on Metabolic, Antioxidative and Inflammatory Traits.
Gruse J, Kanitz E, Weitzel JM, Tuchscherer A, Stefaniak T, Jawor P, Wolffram S, Hammon HM., PLoS One 11(1), 2016
PMID: 26752173
The Impact of HIV Co-Infection on the Genomic Response to Sepsis.
Huson MA, Scicluna BP, van Vught LA, Wiewel MA, Hoogendijk AJ, Cremer OL, Bonten MJ, Schultz MJ, Franitza M, Toliat MR, Nürnberg P, Grobusch MP, van der Poll T., PLoS One 11(2), 2016
PMID: 26871709
Effect of a diet enriched with omega-6 and omega-3 fatty acids on the pig liver transcriptome.
Szostak A, Ogłuszka M, Te Pas MF, Poławska E, Urbański P, Juszczuk-Kubiak E, Blicharski T, Pareek CS, Dunkelberger JR, Horbańczuk JO, Pierzchała M., Genes Nutr 11(), 2016
PMID: 27482299
Unaccounted uncertainty from qPCR efficiency estimates entails uncontrolled false positive rates.
Bilgrau AE, Falgreen S, Petersen A, Kjeldsen MK, Bødker JS, Johnsen HE, Dybkær K, Bøgsted M., BMC Bioinformatics 17(), 2016
PMID: 27067838
Effects of a six-week intraduodenal supplementation with quercetin on liver lipid metabolism and oxidative stress in peripartal dairy cows.
Stoldt AK, Mielenz M, Nürnberg G, Sauerwein H, Esatbeyoglu T, Wagner AE, Rimbach G, Starke A, Wolffram S, Metges CC., J Anim Sci 94(5), 2016
PMID: 27285689
A heterogeneous population of nuclear-encoded mitochondrial mRNAs is present in the axons of primary sympathetic neurons.
Aschrafi A, Kar AN, Gale JR, Elkahloun AG, Vargas JN, Sales N, Wilson G, Tompkins M, Gioio AE, Kaplan BB., Mitochondrion 30(), 2016
PMID: 27318271
The Calcineurin Variant CnAβ1 Controls Mouse Embryonic Stem Cell Differentiation by Directing mTORC2 Membrane Localization and Activation.
Gómez-Salinero JM, López-Olañeta MM, Ortiz-Sánchez P, Larrasa-Alonso J, Gatto A, Felkin LE, Barton PJR, Navarro-Lérida I, Ángel Del Pozo M, García-Pavía P, Sundararaman B, Giovinazo G, Yeo GW, Lara-Pezzi E., Cell Chem Biol 23(11), 2016
PMID: 27746127
Hydroethanolic extract of Baccharis trimera ameliorates alcoholic fatty liver disease in mice.
Lívero FA, Martins GG, Queiroz Telles JE, Beltrame OC, Petris Biscaia SM, Cavicchiolo Franco CR, Oude Elferink RP, Acco A., Chem Biol Interact 260(), 2016
PMID: 27756550
Selective targeting of CREB-binding protein/β-catenin inhibits growth of and extracellular matrix remodelling by airway smooth muscle.
Koopmans T, Crutzen S, Menzen MH, Halayko AJ, Hackett TL, Knight DA, Gosens R., Br J Pharmacol 173(23), 2016
PMID: 27629364
System-specific periodicity in quantitative real-time polymerase chain reaction data questions threshold-based quantitation.
Spiess AN, Rödiger S, Burdukiewicz M, Volksdorf T, Tellinghuisen J., Sci Rep 6(), 2016
PMID: 27958340
Real-time PCR detection chemistry.
Navarro E, Serrano-Heras G, Castaño MJ, Solera J., Clin Chim Acta 439(), 2015
PMID: 25451956
Hypoxia and the pharmaceutical diclofenac influence the circadian responses of three-spined stickleback.
Prokkola JM, Nikinmaa M, Lubiana P, Kanerva M, McCairns RJ, Götting M., Aquat Toxicol 158(), 2015
PMID: 25461750
Satellite DNA as a driver of population divergence in the red flour beetle Tribolium castaneum.
Feliciello I, Akrap I, Brajković J, Zlatar I, Ugarković Đ., Genome Biol Evol 7(1), 2015
PMID: 25527837
Inhibition of histone deacetylase (HDAC) by 4-phenylbutyrate results in increased junctional conductance between rat corpora smooth muscle cells.
Wang HZ, Rosati B, Gordon C, Valiunas V, McKinnon D, Cohen IS, Brink PR., Front Pharmacol 6(), 2015
PMID: 25691868
Robust regression methods for real-time polymerase chain reaction.
Trypsteen W, De Neve J, Bosman K, Nijhuis M, Thas O, Vandekerckhove L, De Spiegelaere W., Anal Biochem 480(), 2015
PMID: 25862086
chipPCR: an R package to pre-process raw data of amplification curves.
Rödiger S, Burdukiewicz M, Schierack P., Bioinformatics 31(17), 2015
PMID: 25913204
Effects of sulfated and non-sulfated β-glucan extracted from Agaricus brasiliensis in breast adenocarcinoma cells - MCF-7.
Baranoski A, Tempesta Oliveira M, Semprebon SC, Niwa AM, Ribeiro LR, Mantovani MS., Toxicol Mech Methods 25(9), 2015
PMID: 25970150
RDML-Ninja and RDMLdb for standardized exchange of qPCR data.
Ruijter JM, Lefever S, Anckaert J, Hellemans J, Pfaffl MW, Benes V, Bustin SA, Vandesompele J, Untergasser A, RDML consortium., BMC Bioinformatics 16(), 2015
PMID: 26087842
Resistance of R-Ras knockout mice to skin tumour induction.
May U, Prince S, Vähätupa M, Laitinen AM, Nieminen K, Uusitalo-Järvinen H, Järvinen TA., Sci Rep 5(), 2015
PMID: 26133397
Removal of between-run variation in a multi-plate qPCR experiment.
Ruijter JM, Ruiz Villalba A, Hellemans J, Untergasser A, van den Hoff MJ., Biomol Detect Quantif 5(), 2015
PMID: 27077038
Validating Internal Control Genes for the Accurate Normalization of qPCR Expression Analysis of the Novel Model Plant Setaria viridis.
Lambret-Frotté J, de Almeida LC, de Moura SM, Souza FL, Linhares FS, Alves-Ferreira M., PLoS One 10(8), 2015
PMID: 26247784
Satellite DNA Modulates Gene Expression in the Beetle Tribolium castaneum after Heat Stress.
Feliciello I, Akrap I, Ugarković Đ., PLoS Genet 11(8), 2015
PMID: 26275223
Data on individual PCR efficiency values as quality control for circulating miRNAs.
Brunet-Vega A, Pericay C, Quílez ME, Ramírez-Lázaro MJ, Calvet X, Calvet X, Lario S., Data Brief 5(), 2015
PMID: 26568973
Adult neural precursor cells form connexin-dependent networks that improve their survival.
Ravella A, Ringstedt T, Brion JP, Pandolfo M, Herlenius E., Neuroreport 26(15), 2015
PMID: 26351758
SNPase-ARMS qPCR: Ultrasensitive Mutation-Based Detection of Cell-Free Tumor DNA in Melanoma Patients.
Stadler J, Eder J, Pratscher B, Brandt S, Schneller D, Müllegger R, Vogl C, Trautinger F, Brem G, Burgstaller JP., PLoS One 10(11), 2015
PMID: 26562020
MAKERGAUL: an innovative MAK2-based model and software for real-time PCR quantification.
Bultmann CA, Weiskirchen R., Clin Biochem 47(1-2), 2014
PMID: 24183882
FXR-dependent reduction of hepatic steatosis in a bile salt deficient mouse model.
Kunne C, Acco A, Duijst S, de Waart DR, Paulusma CC, Gaemers I, Oude Elferink RP., Biochim Biophys Acta 1842(5), 2014
PMID: 24548803
NLRP3 and ASC differentially affect the lung transcriptome during pneumococcal pneumonia.
van Lieshout MH, Scicluna BP, Florquin S, van der Poll T., Am J Respir Cell Mol Biol 50(4), 2014
PMID: 24164497
Cardiomyocyte-specific miRNA-30c over-expression causes dilated cardiomyopathy.
Wijnen WJ, van der Made I, van den Oever S, Hiller M, de Boer BA, Picavet DI, Chatzispyrou IA, Houtkooper RH, Tijsen AJ, Hagoort J, van Veen H, Everts V, Ruijter JM, Pinto YM, Creemers EE., PLoS One 9(5), 2014
PMID: 24789369
Analysis of qPCR reference gene stability determination methods and a practical approach for efficiency calculation on a turbot (Scophthalmus maximus) gonad dataset.
Robledo D, Hernández-Urcera J, Cal RM, Pardo BG, Sánchez L, Martínez P, Viñas A., BMC Genomics 15(), 2014
PMID: 25091330
A survey of tools for the analysis of quantitative PCR (qPCR) data.
Pabinger S, Rödiger S, Kriegner A, Vierlinger K, Weinhäusel A., Biomol Detect Quantif 1(1), 2014
PMID: 27920994
Integrative genomic approach identifies multiple genes involved in cardiac collagen deposition.
Lodder EM, Scicluna BP, Beekman L, Arends D, Moerland PD, Tanck MW, Adriaens ME, Bezzina CR., Circ Cardiovasc Genet 7(6), 2014
PMID: 25217174
Analysis of biological and technical variability in gene expression assays from formalin-fixed paraffin-embedded classical Hodgkin lymphomas.
Vera-Lozada G, Scholl V, Barros MH, Sisti D, Guescini M, Stocchi V, Stefanoff CG, Hassan R., Exp Mol Pathol 97(3), 2014
PMID: 25236575
A fixed-point algorithm for estimating amplification efficiency from a polymerase chain reaction dilution series.
Jones ME, Mayne GC, Wang T, Watson DI, Hussey DJ., BMC Bioinformatics 15(), 2014
PMID: 25492416
NEDD9 depletion destabilizes Aurora A kinase and heightens the efficacy of Aurora A inhibitors: implications for treatment of metastatic solid tumors.
Ice RJ, McLaughlin SL, Livengood RH, Culp MV, Eddy ER, Ivanov AV, Pugacheva EN., Cancer Res 73(10), 2013
PMID: 23539442
Accurate and precise DNA quantification in the presence of different amplification efficiencies using an improved Cy0 method.
Guescini M, Sisti D, Rocchi MB, Panebianco R, Tibollo P, Stocchi V., PLoS One 8(7), 2013
PMID: 23861909
Coronary heart disease alters intercellular communication by modifying microparticle-mediated microRNA transport.
Finn NA, Eapen D, Manocha P, Al Kassem H, Lassegue B, Ghasemzadeh N, Quyyumi A, Searles CD., FEBS Lett 587(21), 2013
PMID: 24042051

49 References

Daten bereitgestellt von Europe PubMed Central.

The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments.
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT., Clin. Chem. 55(4), 2009
PMID: 19246619
Kinetic PCR analysis: real-time monitoring of DNA amplification reactions.
Higuchi R, Fockler C, Dollinger G, Watson R., Biotechnology (N.Y.) 11(9), 1993
PMID: 7764001
Quantitative real-time RT-PCR--a perspective.
Bustin SA, Benes V, Nolan T, Pfaffl MW., J. Mol. Endocrinol. 34(3), 2005
PMID: 15956331
Twenty-five years of quantitative PCR for gene expression analysis.
VanGuilder HD, Vrana KE, Freeman WM., BioTechniques 44(5), 2008
PMID: 18474036
MiR423-5p as a circulating biomarker for heart failure.
Tijsen AJ, Creemers EE, Moerland PD, de Windt LJ, van der Wal AC, Kok WE, Pinto YM., Circ. Res. 106(6), 2010
PMID: 20185794
miRNAs can predict prostate cancer biochemical relapse and are involved in tumor progression.
Fendler A, Jung M, Stephan C, Honey RJ, Stewart RJ, Pace KT, Erbersdobler A, Samaan S, Jung K, Yousef GM., Int. J. Oncol. 39(5), 2011
PMID: 21769427
miRNA expression profiling enables risk stratification in archived and fresh neuroblastoma tumor samples.
De Preter K, Mestdagh P, Vermeulen J, Zeka F, Naranjo A, Bray I, Castel V, Chen C, Drozynska E, Eggert A, Hogarty MD, Izycka-Swieszewska E, London WB, Noguera R, Piqueras M, Bryan K, Schowe B, van Sluis P, Molenaar JJ, Schramm A, Schulte JH, Stallings RL, Versteeg R, Laureys G, Van Roy N, Speleman F, Vandesompele J., Clin. Cancer Res. 17(24), 2011
PMID: 22031095
Clinical variations modulate patterns of gene expression and define blood biomarkers in major depression.
Belzeaux R, Formisano-Treziny C, Loundou A, Boyer L, Gabert J, Samuelian JC, Feron F, Naudin J, Ibrahim EC., J Psychiatr Res 44(16), 2010
PMID: 20471034
Identification of markers of prostate cancer progression using candidate gene expression.
Larkin SE, Holmes S, Cree IA, Walker T, Basketter V, Bickers B, Harris S, Garbis SD, Townsend PA, Aukim-Hastie C., Br. J. Cancer 106(1), 2011
PMID: 22075945
Predicting outcomes for children with neuroblastoma using a multigene-expression signature: a retrospective SIOPEN/COG/GPOH study.
Vermeulen J, De Preter K, Naranjo A, Vercruysse L, Van Roy N, Hellemans J, Swerts K, Bravo S, Scaruffi P, Tonini GP, De Bernardi B, Noguera R, Piqueras M, Canete A, Castel V, Janoueix-Lerosey I, Delattre O, Schleiermacher G, Michon J, Combaret V, Fischer M, Oberthuer A, Ambros PF, Beiske K, Benard J, Marques B, Rubie H, Kohler J, Potschger U, Ladenstein R, Hogarty MD, McGrady P, London WB, Laureys G, Speleman F, Vandesompele J., Lancet Oncol. 10(7), 2009
PMID: 19515614
High throughput nano-liter RT-qPCR to classify soil contamination using a soil arthropod.
de Boer ME, Berg S, Timmermans MJ, den Dunnen JT, van Straalen NM, Ellers J, Roelofs D., BMC Mol. Biol. 12(), 2011
PMID: 21362169

Izzo, Aus. Vet. J. 90(), 2012
Mathematics of quantitative kinetic PCR and the application of standard curves.
Rutledge RG, Cote C., Nucleic Acids Res. 31(16), 2003
PMID: 12907745
Tech.Sight. A technique whose time has come.
Walker NJ., Science 296(5567), 2002
PMID: 11964485
Quantification of mRNA using real-time RT-PCR.
Nolan T, Hands RE, Bustin SA., Nat Protoc 1(3), 2006
PMID: 17406449
Quantitative RT-PCR: pitfalls and potential.
Freeman WM, Walker SJ, Vrana KE., BioTechniques 26(1), 1999
PMID: 9894600

Pfaffl, Biotechnol. Lett. 23(), 2001

Vandesompele, Genome Biol. 3(), 2002
Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR
Fleige S, Walf V, Huch S, Prgomet C, Sehm J, Pfaffl MW., Biotechnol. Lett. 28(19), 2006
PMID: IND43855112
Statistical significance of quantitative PCR.
Karlen Y, McNair A, Perseguers S, Mazza C, Mermod N., BMC Bioinformatics 8(), 2007
PMID: 17445280
qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data.
Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J., Genome Biol. 8(2), 2007
PMID: 17291332
Efficiency of DNA replication in the polymerase chain reaction.
Stolovitzky G, Cecchi G., Proc. Natl. Acad. Sci. U.S.A. 93(23), 1996
PMID: 8917524
Model based analysis of real-time PCR data from DNA binding dye protocols.
Alvarez MJ, Vila-Ortiz GJ, Salibe MC, Podhajcer OL, Pitossi FJ., BMC Bioinformatics 8(), 2007
PMID: 17349040
Enhanced analysis of real-time PCR data by using a variable efficiency model: FPK-PCR.
Lievens A, Van Aelst S, Van den Bulcke M, Goetghebeur E., Nucleic Acids Res. 40(2), 2011
PMID: 22102586

Gentle, BioTechniques 31(), 2001
Standardized determination of real-time PCR efficiency from a single reaction set-up.
Tichopad A, Dilger M, Schwarz G, Pfaffl MW., Nucleic Acids Res. 31(20), 2003
PMID: 14530455
Comprehensive algorithm for quantitative real-time polymerase chain reaction.
Zhao S, Fernald RD., J. Comput. Biol. 12(8), 2005
PMID: 16241897
Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis.
Peirson SN, Butler JN, Foster RG., Nucleic Acids Res. 31(14), 2003
PMID: 12853650
Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data.
Ramakers C, Ruijter JM, Deprez RH, Moorman AF., Neurosci. Lett. 339(1), 2003
PMID: 12618301
Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data.
Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, Moorman AF., Nucleic Acids Res. 37(6), 2009
PMID: 19237396
Validation of a quantitative method for real time PCR kinetics.
Liu W, Saint DA., Biochem. Biophys. Res. Commun. 294(2), 2002
PMID: 12051718
A standard curve based method for relative real time PCR data processing.
Larionov A, Krause A, Miller W., BMC Bioinformatics 6(), 2005
PMID: 15780134
A new real-time PCR method to overcome significant quantitative inaccuracy due to slight amplification inhibition.
Guescini M, Sisti D, Rocchi MB, Stocchi L, Stocchi V., BMC Bioinformatics 9(), 2008
PMID: 18667053
UNAFold: software for nucleic acid folding and hybridization.
Markham NR, Zuker M., Methods Mol. Biol. 453(), 2008
PMID: 18712296
Measurable impact of RNA quality on gene expression results from quantitative PCR.
Vermeulen J, De Preter K, Lefever S, Nuytens J, De Vloed F, Derveaux S, Hellemans J, Speleman F, Vandesompele J., Nucleic Acids Res. 39(9), 2011
PMID: 21317187

Conover, 1980
Design and optimization of reverse-transcription quantitative PCR experiments.
Tichopad A, Kitchen R, Riedmaier I, Becker C, Stahlberg A, Kubista M., Clin. Chem. 55(10), 2009
PMID: 19643838
Shape based kinetic outlier detection in real-time PCR.
Sisti D, Guescini M, Rocchi MB, Tibollo P, D'Atri M, Stocchi V., BMC Bioinformatics 11(), 2010
PMID: 20385019

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 22975077
PubMed | Europe PMC

Suchen in

Google Scholar