Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes

Hain T, Ghai R, Billion A, Kuenne CT, Steinweg C, Izar B, Mohamed W, Mraheil M, Domann E, Schaffrath S, Kärst U, et al. (2012)
BMC Genomics 13(1): 144.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hain, Torsten; Ghai, Rohit; Billion, Andre; Kuenne, Carsten Tobias; Steinweg, Christiane; Izar, Benjamin; Mohamed, Walid; Mraheil, Mobarak; Domann, Eugen; Schaffrath, Silke; Kärst, Uwe; Goesmann, AlexanderUniBi
Alle
Abstract / Bemerkung
ABSTRACT: BACKGROUND: Listeria monocytogenes is a food-borne pathogen that causes infections with a high-mortality rate and has served as an invaluable model for intracellular parasitism. Here, we report complete genome sequences for two L. monocytogenes strains belonging to serotype 4a (L99) and 4b (CLIP80459), and transcriptomes of representative strains from lineages I, II, and III, thereby permitting in-depth comparison of genome- and transcriptome -based data from three lineages of L. monocytogenes. Lineage III, represented by the 4a L99 genome is known to contain strains less virulent for humans. RESULTS: The genome analysis of the weakly pathogenic L99 serotype 4a provides extensive evidence of virulence gene decay, including loss of several important surface proteins. The 4b CLIP80459 genome, unlike the previously sequenced 4b F2365 genome harbours an intact inlB invasion gene. These lineage I strains are characterized by the lack of prophage genes, as they share only a single prophage locus with other L. monocytogenes genomes 1/2a EGD-e and 4a L99. Comparative transcriptome analysis during intracellular growth uncovered adaptive expression level differences in lineages I, II and III of Listeria, notable amongst which was a strong intracellular induction of flagellar genes in strain 4a L99 compared to the other lineages. Furthermore, extensive differences between strains are manifest at levels of metabolic flux control and phosphorylated sugar uptake. Intriguingly, prophage gene expression was found to be a hallmark of intracellular gene expression. Deletion mutants in the single shared prophage locus of lineage II strain EGD-e 1/2a, the lma operon, revealed severe attenuation of virulence in a murine infection model. CONCLUSION: Comparative genomics and transcriptome analysis of L. monocytogenes strains from three lineages implicate prophage genes in intracellular adaptation and indicate that gene loss and decay may have led to the emergence of attenuated lineages.
Erscheinungsjahr
2012
Zeitschriftentitel
BMC Genomics
Band
13
Ausgabe
1
Art.-Nr.
144
ISSN
1471-2164
Page URI
https://pub.uni-bielefeld.de/record/2500966

Zitieren

Hain T, Ghai R, Billion A, et al. Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes. BMC Genomics. 2012;13(1): 144.
Hain, T., Ghai, R., Billion, A., Kuenne, C. T., Steinweg, C., Izar, B., Mohamed, W., et al. (2012). Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes. BMC Genomics, 13(1), 144. doi:10.1186/1471-2164-13-144
Hain, Torsten, Ghai, Rohit, Billion, Andre, Kuenne, Carsten Tobias, Steinweg, Christiane, Izar, Benjamin, Mohamed, Walid, et al. 2012. “Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes”. BMC Genomics 13 (1): 144.
Hain, T., Ghai, R., Billion, A., Kuenne, C. T., Steinweg, C., Izar, B., Mohamed, W., Mraheil, M., Domann, E., Schaffrath, S., et al. (2012). Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes. BMC Genomics 13:144.
Hain, T., et al., 2012. Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes. BMC Genomics, 13(1): 144.
T. Hain, et al., “Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes”, BMC Genomics, vol. 13, 2012, : 144.
Hain, T., Ghai, R., Billion, A., Kuenne, C.T., Steinweg, C., Izar, B., Mohamed, W., Mraheil, M., Domann, E., Schaffrath, S., Kärst, U., Goesmann, A., Oehm, S., Pühler, A., Merkl, R., Vorwerk, S., Glaser, P., Garrido, P., Rusniok, C., Buchrieser, C., Goebel, W., Chakraborty, T.: Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes. BMC Genomics. 13, : 144 (2012).
Hain, Torsten, Ghai, Rohit, Billion, Andre, Kuenne, Carsten Tobias, Steinweg, Christiane, Izar, Benjamin, Mohamed, Walid, Mraheil, Mobarak, Domann, Eugen, Schaffrath, Silke, Kärst, Uwe, Goesmann, Alexander, Oehm, Sebastian, Pühler, Alfred, Merkl, Rainer, Vorwerk, Sonja, Glaser, Philippe, Garrido, Patricia, Rusniok, Christophe, Buchrieser, Carmen, Goebel, Werner, and Chakraborty, Trinad. “Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes”. BMC Genomics 13.1 (2012): 144.

35 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A Listeria monocytogenes ST2 clone lacking chitinase ChiB from an outbreak of non-invasive gastroenteritis.
Halbedel S, Prager R, Banerji S, Kleta S, Trost E, Nishanth G, Alles G, Hölzel C, Schlesiger F, Pietzka A, Schlüter D, Flieger A., Emerg Microbes Infect 8(1), 2019
PMID: 30866756
Listeria monocytogenes Biofilm Adaptation to Different Temperatures Seen Through Shotgun Proteomics.
Santos T, Viala D, Chambon C, Esbelin J, Hébraud M., Front Nutr 6(), 2019
PMID: 31259174
Metabolism of the Gram-Positive Bacterial Pathogen Listeria monocytogenes.
Sauer JD, Herskovits AA, O'Riordan MXD., Microbiol Spectr 7(4), 2019
PMID: 31418407
Genome-wide-analyses of Listeria monocytogenes from food-processing plants reveal clonal diversity and date the emergence of persisting sequence types.
Knudsen GM, Nielsen JB, Marvig RL, Ng Y, Worning P, Westh H, Gram L., Environ Microbiol Rep 9(4), 2017
PMID: 28574206
OrfX, a Nucleomodulin Required for Listeria monocytogenes Virulence.
Prokop A, Gouin E, Villiers V, Nahori MA, Vincentelli R, Duval M, Cossart P, Dussurget O., MBio 8(5), 2017
PMID: 29089430
Determination of Evolutionary Relationships of Outbreak-Associated Listeria monocytogenes Strains of Serotypes 1/2a and 1/2b by Whole-Genome Sequencing.
Bergholz TM, den Bakker HC, Katz LS, Silk BJ, Jackson KA, Kucerova Z, Joseph LA, Turnsek M, Gladney LM, Halpin JL, Xavier K, Gossack J, Ward TJ, Frace M, Tarr CL., Appl Environ Microbiol 82(3), 2016
PMID: 26590286
Evolution and Diversity of Listeria monocytogenes from Clinical and Food Samples in Shanghai, China.
Zhang J, Cao G, Xu X, Allard M, Li P, Brown E, Yang X, Pan H, Meng J., Front Microbiol 7(), 2016
PMID: 27499751
Population Genetic Structure of Listeria monocytogenes Strains as Determined by Pulsed-Field Gel Electrophoresis and Multilocus Sequence Typing.
Henri C, Félix B, Guillier L, Leekitcharoenphon P, Michelon D, Mariet JF, Aarestrup FM, Mistou MY, Hendriksen RS, Roussel S., Appl Environ Microbiol 82(18), 2016
PMID: 27235443
Listeria monocytogenes Strains Underrepresented during Selective Enrichment with an ISO Method Might Dominate during Passage through Simulated Gastric Fluid and In Vitro Infection of Caco-2 Cells.
Zilelidou E, Karmiri CV, Zoumpopoulou G, Mavrogonatou E, Kletsas D, Tsakalidou E, Papadimitriou K, Drosinos E, Skandamis P., Appl Environ Microbiol 82(23), 2016
PMID: 27637880
1926-2016: 90 Years of listeriology.
Lebreton A, Stavru F, Brisse S, Cossart P., Microbes Infect 18(12), 2016
PMID: 27876526
Comparative Genomics of the Listeria monocytogenes ST204 Subgroup.
Fox EM, Allnutt T, Bradbury MI, Fanning S, Chandry PS., Front Microbiol 7(), 2016
PMID: 28066377
Bacterial and cellular RNAs at work during Listeria infection.
Sesto N, Koutero M, Cossart P., Future Microbiol 9(9), 2014
PMID: 25340833
A PNPase dependent CRISPR System in Listeria.
Sesto N, Touchon M, Andrade JM, Kondo J, Rocha EP, Arraiano CM, Archambaud C, Westhof É, Romby P, Cossart P., PLoS Genet 10(1), 2014
PMID: 24415952
Ultra deep sequencing of Listeria monocytogenes sRNA transcriptome revealed new antisense RNAs.
Behrens S, Widder S, Mannala GK, Qing X, Madhugiri R, Kefer N, Abu Mraheil M, Rattei T, Hain T., PLoS One 9(2), 2014
PMID: 24498259
The Listeria monocytogenes LPXTG surface protein Lmo1413 is an invasin with capacity to bind mucin.
Mariscotti JF, Quereda JJ, García-Del Portillo F, Pucciarelli MG., Int J Med Microbiol 304(3-4), 2014
PMID: 24572033
Genome sequencing of Listeria monocytogenes "Quargel" listeriosis outbreak strains reveals two different strains with distinct in vitro virulence potential.
Rychli K, Müller A, Zaiser A, Schoder D, Allerberger F, Wagner M, Schmitz-Esser S., PLoS One 9(2), 2014
PMID: 24587155
Genome comparison of Listeria monocytogenes serotype 4a strain HCC23 with selected lineage I and lineage II L. monocytogenes strains and other Listeria strains.
Paul D, Steele C, Donaldson JR, Banes MM, Kumar R, Bridges SM, Arick M, Lawrence ML., Genom Data 2(), 2014
PMID: 26484097
A novel glucose 6-phosphate isomerase from Listeria monocytogenes.
Cech DL, Wang PF, Holt MC, Assimon VA, Schaub JM, Holler TP, Woodard RW., Protein J 33(5), 2014
PMID: 25194846
Detection of very long antisense transcripts by whole transcriptome RNA-Seq analysis of Listeria monocytogenes by semiconductor sequencing technology.
Wehner S, Mannala GK, Qing X, Madhugiri R, Chakraborty T, Mraheil MA, Hain T, Marz M., PLoS One 9(10), 2014
PMID: 25286309
Reassessment of the Listeria monocytogenes pan-genome reveals dynamic integration hotspots and mobile genetic elements as major components of the accessory genome.
Kuenne C, Billion A, Mraheil MA, Strittmatter A, Daniel R, Goesmann A, Barbuddhe S, Hain T, Chakraborty T., BMC Genomics 14(), 2013
PMID: 23339658
Listeria phages: Genomes, evolution, and application.
Klumpp J, Loessner MJ., Bacteriophage 3(3), 2013
PMID: 24251077

90 References

Daten bereitgestellt von Europe PubMed Central.

Pathogenomics of Listeria spp.
Hain T, Chatterjee SS, Ghai R, Kuenne CT, Billion A, Steinweg C, Domann E, Karst U, Jansch L, Wehland J, Eisenreich W, Bacher A, Joseph B, Schar J, Kreft J, Klumpp J, Loessner MJ, Dorscht J, Neuhaus K, Fuchs TM, Scherer S, Doumith M, Jacquet C, Martin P, Cossart P, Rusniock C, Glaser P, Buchrieser C, Goebel W, Chakraborty T., Int. J. Med. Microbiol. 297(7-8), 2007
PMID: 17482873
Listeria pathogenesis and molecular virulence determinants.
Vazquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Dominguez-Bernal G, Goebel W, Gonzalez-Zorn B, Wehland J, Kreft J., Clin. Microbiol. Rev. 14(3), 2001
PMID: 11432815
Whole-genome sequence of Listeria welshimeri reveals common steps in genome reduction with Listeria innocua as compared to Listeria monocytogenes.
Hain T, Steinweg C, Kuenne CT, Billion A, Ghai R, Chatterjee SS, Domann E, Karst U, Goesmann A, Bekel T, Bartels D, Kaiser O, Meyer F, Puhler A, Weisshaar B, Wehland J, Liang C, Dandekar T, Lampidis R, Kreft J, Goebel W, Chakraborty T., J. Bacteriol. 188(21), 2006
PMID: 16936040
Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation.
Cossart P, Vicente MF, Mengaud J, Baquero F, Perez-Diaz JC, Berche P., Infect. Immun. 57(11), 1989
PMID: 2509366
Listeria monocytogenes, a unique model in infection biology: an overview.
Cossart P, Toledo-Arana A., Microbes Infect. 10(9), 2008
PMID: 18775788
Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization.
Lecuit M, Ohayon H, Braun L, Mengaud J, Cossart P., Infect. Immun. 65(12), 1997
PMID: 9393831
A spontaneous genomic deletion in Listeria ivanovii identifies LIPI-2, a species-specific pathogenicity island encoding sphingomyelinase and numerous internalins.
Dominguez-Bernal G, Muller-Altrock S, Gonzalez-Zorn B, Scortti M, Herrmann P, Monzo HJ, Lacharme L, Kreft J, Vazquez-Boland JA., Mol. Microbiol. 59(2), 2006
PMID: 16390439
Listeriolysin S, a novel peptide haemolysin associated with a subset of lineage I Listeria monocytogenes.
Cotter PD, Draper LA, Lawton EM, Daly KM, Groeger DS, Casey PG, Ross RP, Hill C., PLoS Pathog. 4(9), 2008
PMID: 18787690
Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics.
Orsi RH, den Bakker HC, Wiedmann M., Int. J. Med. Microbiol. 301(2), 2010
PMID: 20708964
Multilocus genotyping assays for single nucleotide polymorphism-based subtyping of Listeria monocytogenes isolates.
Ward TJ, Ducey TF, Usgaard T, Dunn KA, Bielawski JP., Appl. Environ. Microbiol. 74(24), 2008
PMID: 18931295
A molecular marker for evaluating the pathogenic potential of foodborne Listeria monocytogenes.
Jacquet C, Doumith M, Gordon JI, Martin PM, Cossart P, Lecuit M., J. Infect. Dis. 189(11), 2004
PMID: 15143478
A disease of rabbits characterized by a large mononuclear leucocytosis caused by a hitherto undescribed bacillus Bacterium monocytogenes (n.sp.)
AUTHOR UNKNOWN, 1926
Comparative genomics of Listeria species.
Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, Charbit A, Chetouani F, Couve E, de Daruvar A, Dehoux P, Domann E, Dominguez-Bernal G, Duchaud E, Durant L, Dussurget O, Entian KD, Fsihi H, Garcia-del Portillo F, Garrido P, Gautier L, Goebel W, Gomez-Lopez N, Hain T, Hauf J, Jackson D, Jones LM, Kaerst U, Kreft J, Kuhn M, Kunst F, Kurapkat G, Madueno E, Maitournam A, Vicente JM, Ng E, Nedjari H, Nordsiek G, Novella S, de Pablos B, Perez-Diaz JC, Purcell R, Remmel B, Rose M, Schlueter T, Simoes N, Tierrez A, Vazquez-Boland JA, Voss H, Wehland J, Cossart P., Science 294(5543), 2001
PMID: 11679669
Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species.
Nelson KE, Fouts DE, Mongodin EF, Ravel J, DeBoy RT, Kolonay JF, Rasko DA, Angiuoli SV, Gill SR, Paulsen IT, Peterson J, White O, Nelson WC, Nierman W, Beanan MJ, Brinkac LM, Daugherty SC, Dodson RJ, Durkin AS, Madupu R, Haft DH, Selengut J, Van Aken S, Khouri H, Fedorova N, Forberger H, Tran B, Kathariou S, Wonderling LD, Uhlich GA, Bayles DO, Luchansky JB, Fraser CM., Nucleic Acids Res. 32(8), 2004
PMID: 15115801
Two consecutive nationwide outbreaks of Listeriosis in France, October 1999-February 2000.
de Valk H, Vaillant V, Jacquet C, Rocourt J, Le Querrec F, Stainer F, Quelquejeu N, Pierre O, Pierre V, Desenclos JC, Goulet V., Am. J. Epidemiol. 154(10), 2001
PMID: 11700249
In vivo transcriptional profiling of Listeria monocytogenes and mutagenesis identify new virulence factors involved in infection.
Camejo A, Buchrieser C, Couve E, Carvalho F, Reis O, Ferreira P, Sousa S, Cossart P, Cabanes D., PLoS Pathog. 5(5), 2009
PMID: 19478867
Intracellular gene expression profile of Listeria monocytogenes.
Chatterjee SS, Hossain H, Otten S, Kuenne C, Kuchmina K, Machata S, Domann E, Chakraborty T, Hain T., Infect. Immun. 74(2), 2006
PMID: 16428782
Life of Listeria monocytogenes in the host cells' cytosol.
Joseph B, Goebel W., Microbes Infect. 9(10), 2007
PMID: 17719818
The impact of prophages on bacterial chromosomes.
Canchaya C, Fournous G, Brussow H., Mol. Microbiol. 53(1), 2004
PMID: 15225299
Comparative genome analysis of Listeria bacteriophages reveals extensive mosaicism, programmed translational frameshifting, and a novel prophage insertion site.
Dorscht J, Klumpp J, Bielmann R, Schmelcher M, Born Y, Zimmer M, Calendar R, Loessner MJ., J. Bacteriol. 191(23), 2009
PMID: 19783628
Versatile and open software for comparing large genomes.
Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL., Genome Biol. 5(2), 2004
PMID: 14759262
GenomeViz: visualizing microbial genomes
AUTHOR UNKNOWN, 2004
New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays.
Doumith M, Cazalet C, Simoes N, Frangeul L, Jacquet C, Kunst F, Martin P, Cossart P, Glaser P, Buchrieser C., Infect. Immun. 72(2), 2004
PMID: 14742555
Differences in virulence and in expression of PrfA and PrfA-regulated virulence genes of Listeria monocytogenes strains belonging to serogroup 4.
Sokolovic Z, Schuller S, Bohne J, Baur A, Rdest U, Dickneite C, Nichterlein T, Goebel W., Infect. Immun. 64(10), 1996
PMID: 8926062
Distribution of internalin gene profiles of Listeria monocytogenes isolates from different sources associated with phylogenetic lineages.
Jia Y, Nightingale KK, Boor KJ, Ho A, Wiedmann M, McGann P., Foodborne Pathog. Dis. 4(2), 2007
PMID: 17600490
The gene cluster inlC2DE of Listeria monocytogenes contains additional new internalin genes and is important for virulence in mice.
Raffelsbauer D, Bubert A, Engelbrecht F, Scheinpflug J, Simm A, Hess J, Kaufmann SH, Goebel W., Mol. Gen. Genet. 260(2-3), 1998
PMID: 9862466
Listeria monocytogenes internalins bind to the human intestinal mucin MUC2.
Linden SK, Bierne H, Sabet C, Png CW, Florin TH, McGuckin MA, Cossart P., Arch. Microbiol. 190(1), 2008
PMID: 18327567
A new PrfA-regulated gene of Listeria monocytogenes encoding a small, secreted protein which belongs to the family of internalins.
Engelbrecht F, Chun SK, Ochs C, Hess J, Lottspeich F, Goebel W, Sokolovic Z., Mol. Microbiol. 21(4), 1996
PMID: 8878044
The Listeria monocytogenes InlC protein interferes with innate immune responses by targeting the I{kappa}B kinase subunit IKK{alpha}.
Gouin E, Adib-Conquy M, Balestrino D, Nahori MA, Villiers V, Colland F, Dramsi S, Dussurget O, Cossart P., Proc. Natl. Acad. Sci. U.S.A. 107(40), 2010
PMID: 20855622
The bacterial virulence factor InlC perturbs apical cell junctions and promotes cell-to-cell spread of Listeria.
Rajabian T, Gavicherla B, Heisig M, Muller-Altrock S, Goebel W, Gray-Owen SD, Ireton K., Nat. Cell Biol. 11(10), 2009
PMID: 19767742
Identification of four new members of the internalin multigene family of Listeria monocytogenes EGD.
Dramsi S, Dehoux P, Lebrun M, Goossens PL, Cossart P., Infect. Immun. 65(5), 1997
PMID: 9125538
Genome sequence of lineage III Listeria monocytogenes strain HCC23.
Steele CL, Donaldson JR, Paul D, Banes MM, Arick T, Bridges SM, Lawrence ML., J. Bacteriol. 193(14), 2011
PMID: 21602330
Genome sequence of the nonpathogenic Listeria monocytogenes serovar 4a strain M7.
Chen J, Xia Y, Cheng C, Fang C, Shan Y, Jin G, Fang W., J. Bacteriol. 193(18), 2011
PMID: 21742872
Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein.
Cabanes D, Sousa S, Cebria A, Lecuit M, Garcia-del Portillo F, Cossart P., EMBO J. 24(15), 2005
PMID: 16015374
Sequence and binding activity of the autolysin-adhesin Ami from epidemic Listeria monocytogenes 4b.
Milohanic E, Jonquieres R, Glaser P, Dehoux P, Jacquet C, Berche P, Cossart P, Gaillard JL., Infect. Immun. 72(8), 2004
PMID: 15271896
The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor.
Milohanic E, Jonquieres R, Cossart P, Berche P, Gaillard JL., Mol. Microbiol. 39(5), 2001
PMID: 11251838
Comparative transcriptome analysis of Listeria monocytogenes strains of the two major lineages reveals differences in virulence, cell wall, and stress response.
Severino P, Dussurget O, Vencio RZ, Dumas E, Garrido P, Padilla G, Piveteau P, Lemaitre JP, Kunst F, Glaser P, Buchrieser C., Appl. Environ. Microbiol. 73(19), 2007
PMID: 17704270
Characterization of a Listeria monocytogenes-specific protein capable of inducing delayed hypersensitivity in Listeria-immune mice.
Gohmann S, Leimeister-Wachter M, Schiltz E, Goebel W, Chakraborty T., Mol. Microbiol. 4(7), 1990
PMID: 2172692
Identification of Listeria monocytogenes genes contributing to intracellular replication by expression profiling and mutant screening.
Joseph B, Przybilla K, Stuhler C, Schauer K, Slaghuis J, Fuchs TM, Goebel W., J. Bacteriol. 188(2), 2006
PMID: 16385046
Listeria monocytogenes triggers AIM2-mediated pyroptosis upon infrequent bacteriolysis in the macrophage cytosol.
Sauer JD, Witte CE, Zemansky J, Hanson B, Lauer P, Portnoy DA., Cell Host Microbe 7(5), 2010
PMID: 20417169
Multiple Nod-like receptors activate caspase 1 during Listeria monocytogenes infection.
Warren SE, Mao DP, Rodriguez AE, Miao EA, Aderem A., J. Immunol. 180(11), 2008
PMID: 18490757
Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in caspase-1 activation by Listeria monocytogenes.
Wu J, Fernandes-Alnemri T, Alnemri ES., J. Clin. Immunol. 30(5), 2010
PMID: 20490635
Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis.
Mariathasan S, Weiss DS, Dixit VM, Monack DM., J. Exp. Med. 202(8), 2005
PMID: 16230474
Caspase-1 activation of IL-1beta and IL-18 are essential for Shigella flexneri-induced inflammation.
Sansonetti PJ, Phalipon A, Arondel J, Thirumalai K, Banerjee S, Akira S, Takeda K, Zychlinsky A., Immunity 12(5), 2000
PMID: 10843390
Role of FliF and FliI of Listeria monocytogenes in flagellar assembly and pathogenicity.
Bigot A, Pagniez H, Botton E, Frehel C, Dubail I, Jacquet C, Charbit A, Raynaud C., Infect. Immun. 73(9), 2005
PMID: 16113269
Evolution of antibiotic resistance gene function.
Koch AL., Microbiol. Rev. 45(2), 1981
PMID: 7022157
Gene amplification and genomic plasticity in prokaryotes.
Romero D, Palacios R., Annu. Rev. Genet. 31(), 1997
PMID: 9442891
Selection in the evolution of gene duplications.
Kondrashov FA, Rogozin IB, Wolf YI, Koonin EV., Genome Biol. 3(2), 2002
PMID: 11864370
Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene.
van Hoof NA, Hassinen VH, Hakvoort HW, Ballintijn KF, Schat H, Verkleij JA, Ernst WH, Karenlampi SO, Tervahauta AI., Plant Physiol. 126(4), 2001
PMID: 11500550
Genetic architecture of thermal adaptation in Escherichia coli.
Riehle MM, Bennett AF, Long AD., Proc. Natl. Acad. Sci. U.S.A. 98(2), 2001
PMID: 11149947
Amplification of trpEG: adaptation of Buchnera aphidicola to an endosymbiotic association with aphids.
Lai CY, Baumann L, Baumann P., Proc. Natl. Acad. Sci. U.S.A. 91(9), 1994
PMID: 8170994
Modulation of PrfA activity in Listeria monocytogenes upon growth in different culture media.
Stoll R, Mertins S, Joseph B, Muller-Altrock S, Goebel W., Microbiology (Reading, Engl.) 154(Pt 12), 2008
PMID: 19047753
Mutational analysis of glucose transport regulation and glucose-mediated virulence gene repression in Listeria monocytogenes
AUTHOR UNKNOWN, 2011
Glycerol metabolism and PrfA activity in Listeria monocytogenes.
Joseph B, Mertins S, Stoll R, Schar J, Umesha KR, Luo Q, Muller-Altrock S, Goebel W., J. Bacteriol. 190(15), 2008
PMID: 18502850
Microcompartments in prokaryotes: carboxysomes and related polyhedra.
Cannon GC, Bradburne CE, Aldrich HC, Baker SH, Heinhorst S, Shively JM., Appl. Environ. Microbiol. 67(12), 2001
PMID: 11722879
Comparison of the genome sequences of Listeria monocytogenes and Listeria innocua: clues for evolution and pathogenicity.
Buchrieser C, Rusniok C, Kunst F, Cossart P, Glaser P; Listeria Consortium., FEMS Immunol. Med. Microbiol. 35(3), 2003
PMID: 12648839
Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress.
Ralser M, Wamelink MM, Kowald A, Gerisch B, Heeren G, Struys EA, Klipp E, Jakobs C, Breitenbach M, Lehrach H, Krobitsch S., J. Biol. 6(4), 2007
PMID: 18154684
Evolution and classification of the CRISPR-Cas systems.
Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV., Nat. Rev. Microbiol. 9(6), 2011
PMID: 21552286
Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus.
Tang TH, Polacek N, Zywicki M, Huber H, Brugger K, Garrett R, Bachellerie JP, Huttenhofer A., Mol. Microbiol. 55(2), 2005
PMID: 15659164
CRISPR provides acquired resistance against viruses in prokaryotes.
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P., Science 315(5819), 2007
PMID: 17379808
The Listeria transcriptional landscape from saprophytism to virulence.
Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, Loh E, Gripenland J, Tiensuu T, Vaitkevicius K, Barthelemy M, Vergassola M, Nahori MA, Soubigou G, Regnault B, Coppee JY, Lecuit M, Johansson J, Cossart P., Nature 459(7249), 2009
PMID: 19448609
Short-term genome evolution of Listeria monocytogenes in a non-controlled environment.
Orsi RH, Borowsky ML, Lauer P, Young SK, Nusbaum C, Galagan JE, Birren BW, Ivy RA, Sun Q, Graves LM, Swaminathan B, Wiedmann M., BMC Genomics 9(), 2008
PMID: 19014550
Base-calling of automated sequencer traces using phred
AUTHOR UNKNOWN, 1998
Consed: a graphical tool for sequence finishing.
Gordon D, Abajian C, Green P., Genome Res. 8(3), 1998
PMID: 9521923
Whole-genome random sequencing and assembly of Haemophilus influenzae Rd.
Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM., Science 269(5223), 1995
PMID: 7542800
Cloning and assembly strategies in microbial genome projects.
Frangeul L, Nelson KE, Buchrieser C, Danchin A, Glaser P, Kunst F., Microbiology (Reading, Engl.) 145 ( Pt 10)(), 1999
PMID: 10537184
CAAT-Box, Contigs-Assembly and Annotation Tool-Box for genome sequencing projects.
Frangeul L, Glaser P, Rusniok C, Buchrieser C, Duchaud E, Dehoux P, Kunst F., Bioinformatics 20(5), 2004
PMID: 14752000
MAVID: constrained ancestral alignment of multiple sequences.
Bray N, Pachter L., Genome Res. 14(4), 2004
PMID: 15060012
VISTA: computational tools for comparative genomics.
Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I., Nucleic Acids Res. 32(Web Server issue), 2004
PMID: 15215394
GECO--linear visualization for comparative genomics.
Kuenne CT, Ghai R, Chakraborty T, Hain T., Bioinformatics 23(1), 2006
PMID: 17077098
PILER-CR: fast and accurate identification of CRISPR repeats
AUTHOR UNKNOWN, 2007
ACT: the Artemis Comparison Tool.
Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J., Bioinformatics 21(16), 2005
PMID: 15976072
SIGI: score-based identification of genomic islands
AUTHOR UNKNOWN, 2004
Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models
AUTHOR UNKNOWN, 2006
A comparison of normalization methods for high density oligonucleotide array data based on variance and bias.
Bolstad BM, Irizarry RA, Astrand M, Speed TP., Bioinformatics 19(2), 2003
PMID: 12538238
Significance analysis of microarrays applied to the ionizing radiation response.
Tusher VG, Tibshirani R, Chu G., Proc. Natl. Acad. Sci. U.S.A. 98(9), 2001
PMID: 11309499
Vector plasmid for insertional mutagenesis and directional cloning in Listeria spp.
Schaferkordt S, Chakraborty T., BioTechniques 19(5), 1995
PMID: 8588903
Augur--a computational pipeline for whole genome microbial surface protein prediction and classification.
Billion A, Ghai R, Chakraborty T, Hain T., Bioinformatics 22(22), 2006
PMID: 16966358
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22530965
PubMed | Europe PMC

Suchen in

Google Scholar