In vitro-induced response patterns of antileukemic T cells: characterization by spectratyping and immunophenotyping

Reuther S, Schmetzer H, Schuster FR, Krell P, Grabrucker C, Liepert A, Kroell T, Kolb H-J, Borkhardt A, Buhmann R (2013)
Clinical and Experimental Medicine 13(1): 29-48.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Reuther, Susanne; Schmetzer, Helga; Schuster, Friedhelm R.; Krell, PinaUniBi; Grabrucker, Christine; Liepert, Anja; Kroell, Tanja; Kolb, Hans-Jochem; Borkhardt, Arndt; Buhmann, Raymund
Abstract / Bemerkung
Myeloid leukemic cells can be induced to differentiate into leukemia-derived dendritic cells (DC(leu)) regaining the stimulatory capacity of professional DCs while presenting the leukemic antigen repertoire. But so far, the induced antileukemic T-cell responses are variable both in specificity and in efficacy. In an attempt to elucidate the underlying causes of different T-cell response patterns, T-cell receptor (TR) Vβ chain rearrangements were correlated with the T cells corresponding immunophenotypic profile, as well as their proliferative response and cytolytic capacities. In three different settings, donor T cells, either human leukocyte antigen matched or mismatched (haploidentical), or autologous T cells were repeatedly stimulated with myeloid blasts or leukemia-derived DC/DC(leus) from the corresponding patients diseased from acute myeloid leukemia (AML). Although no significant differences in T-cell proliferation were observed, the T-cell-mediated cytolytic response pattern varied considerably and even caused blast proliferation in two cases. Spectratyping revealed a remarkable restriction (>75 % of normal level) of the CD4(+) or CD8(+)-TR repertoire of blast- or DC/DC(leu)-stimulated T cells. Although in absolute terms, DC/DC(leu) stimulation induced the highest grade of restriction in the CD8(+) T-cell subset, the CD4(+) T-cell compartment seemed to be relatively more affected. But most importantly, in vitro stimulation with DC/DC(leu) resulted into an identical TR restriction pattern (β chain) that could be identified in vivo in a patient sample 3 months after allo-SCT. Thus, in vitro tests combining functional flow cytometry with spectratyping might provide predictive information about T cellular response patterns in vivo.
Erscheinungsjahr
2013
Zeitschriftentitel
Clinical and Experimental Medicine
Band
13
Ausgabe
1
Seite(n)
29-48
ISSN
1591-8890
eISSN
1591-9528
Page URI
https://pub.uni-bielefeld.de/record/2492825

Zitieren

Reuther S, Schmetzer H, Schuster FR, et al. In vitro-induced response patterns of antileukemic T cells: characterization by spectratyping and immunophenotyping. Clinical and Experimental Medicine. 2013;13(1):29-48.
Reuther, S., Schmetzer, H., Schuster, F. R., Krell, P., Grabrucker, C., Liepert, A., Kroell, T., et al. (2013). In vitro-induced response patterns of antileukemic T cells: characterization by spectratyping and immunophenotyping. Clinical and Experimental Medicine, 13(1), 29-48. doi:10.1007/s10238-012-0180-y
Reuther, Susanne, Schmetzer, Helga, Schuster, Friedhelm R., Krell, Pina, Grabrucker, Christine, Liepert, Anja, Kroell, Tanja, Kolb, Hans-Jochem, Borkhardt, Arndt, and Buhmann, Raymund. 2013. “In vitro-induced response patterns of antileukemic T cells: characterization by spectratyping and immunophenotyping”. Clinical and Experimental Medicine 13 (1): 29-48.
Reuther, S., Schmetzer, H., Schuster, F. R., Krell, P., Grabrucker, C., Liepert, A., Kroell, T., Kolb, H. - J., Borkhardt, A., and Buhmann, R. (2013). In vitro-induced response patterns of antileukemic T cells: characterization by spectratyping and immunophenotyping. Clinical and Experimental Medicine 13, 29-48.
Reuther, S., et al., 2013. In vitro-induced response patterns of antileukemic T cells: characterization by spectratyping and immunophenotyping. Clinical and Experimental Medicine, 13(1), p 29-48.
S. Reuther, et al., “In vitro-induced response patterns of antileukemic T cells: characterization by spectratyping and immunophenotyping”, Clinical and Experimental Medicine, vol. 13, 2013, pp. 29-48.
Reuther, S., Schmetzer, H., Schuster, F.R., Krell, P., Grabrucker, C., Liepert, A., Kroell, T., Kolb, H.-J., Borkhardt, A., Buhmann, R.: In vitro-induced response patterns of antileukemic T cells: characterization by spectratyping and immunophenotyping. Clinical and Experimental Medicine. 13, 29-48 (2013).
Reuther, Susanne, Schmetzer, Helga, Schuster, Friedhelm R., Krell, Pina, Grabrucker, Christine, Liepert, Anja, Kroell, Tanja, Kolb, Hans-Jochem, Borkhardt, Arndt, and Buhmann, Raymund. “In vitro-induced response patterns of antileukemic T cells: characterization by spectratyping and immunophenotyping”. Clinical and Experimental Medicine 13.1 (2013): 29-48.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Specificity, Privacy, and Degeneracy in the CD4 T Cell Receptor Repertoire Following Immunization.
Sun Y, Best K, Cinelli M, Heather JM, Reich-Zeliger S, Shifrut E, Friedman N, Shawe-Taylor J, Chain B., Front Immunol 8(), 2017
PMID: 28450864
Graft-versus-Leukemia Effect Following Hematopoietic Stem Cell Transplantation for Leukemia.
Dickinson AM, Norden J, Li S, Hromadnikova I, Schmid C, Schmetzer H, Jochem-Kolb H., Front Immunol 8(), 2017
PMID: 28638379
Tracking global changes induced in the CD4 T-cell receptor repertoire by immunization with a complex antigen using short stretches of CDR3 protein sequence.
Thomas N, Best K, Cinelli M, Reich-Zeliger S, Gal H, Shifrut E, Madi A, Friedman N, Shawe-Taylor J, Chain B., Bioinformatics 30(22), 2014
PMID: 25095879

44 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0
6-Thioguanine, cytarabine, and daunorubicin (TAD) and high-dose cytarabine and mitoxantrone (HAM) for induction, TAD for consolidation, and either prolonged maintenance by reduced monthly TAD or TAD-HAM-TAD and one course of intensive consolidation by sequential HAM in adult patients at all ages with de novo acute myeloid leukemia (AML): a randomized trial of the German AML Cooperative Group.
Buchner T, Hiddemann W, Berdel WE, Wormann B, Schoch C, Fonatsch C, Loffler H, Haferlach T, Ludwig WD, Maschmeyer G, Staib P, Aul C, Gruneisen A, Lengfelder E, Frickhofen N, Kern W, Serve HL, Mesters RM, Sauerland MC, Heinecke A; German AML Cooperative Group., J. Clin. Oncol. 21(24), 2003
PMID: 14673036
Graft-versus-leukemia reactions in allogeneic chimeras.
Kolb HJ, Schmid C, Barrett AJ, Schendel DJ., Blood 103(3), 2003
PMID: 12958064
Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients.
Kolb HJ, Mittermuller J, Clemm C, Holler E, Ledderose G, Brehm G, Heim M, Wilmanns W., Blood 76(12), 1990
PMID: 2265242
Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients.
Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W, Ljungman P, Ferrant A, Verdonck L, Niederwieser D, van Rhee F, Mittermueller J, de Witte T, Holler E, Ansari H; European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia., Blood 86(5), 1995
PMID: 7655033
Long-term survival in refractory acute myeloid leukemia after sequential treatment with chemotherapy and reduced-intensity conditioning for allogeneic stem cell transplantation.
Schmid C, Schleuning M, Schwerdtfeger R, Hertenstein B, Mischak-Weissinger E, Bunjes D, Harsdorf SV, Scheid C, Holtick U, Greinix H, Keil F, Schneider B, Sandherr M, Bug G, Tischer J, Ledderose G, Hallek M, Hiddemann W, Kolb HJ., Blood 108(3), 2006
PMID: 16551971
Cytokine secretion by genetically modified nonimmunogenic murine fibrosarcoma. Tumor inhibition by IL-2 but not tumor necrosis factor.
Karp SE, Farber A, Salo JC, Hwu P, Jaffe G, Asher AL, Shiloni E, Restifo NP, Mule JJ, Rosenberg SA., J. Immunol. 150(3), 1993
PMID: 8423345
Dendritic cells in vaccination therapies of malignant diseases.
Brossart P, Brossart M D P., Transfus. Apher. Sci. 27(2), 2002
PMID: 12350054
Origin, maturation and antigen presenting function of dendritic cells.
Cella M, Sallusto F, Lanzavecchia A., Curr. Opin. Immunol. 9(1), 1997
PMID: 9039784
Dendritic cells: On the move from bench to bedside.
Nestle FO, Banchereau J, Hart D., Nat. Med. 7(7), 2001
PMID: 11433329

DF, Crit Rev Immunol 21(1–3), 2001
CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha.
Caux C, Massacrier C, Vanbervliet B, Dubois B, de Saint-Vis B, Dezutter-Dambuyant C, Jacquet C, Schmitt D, Banchereau J., Adv. Exp. Med. Biol. 417(), 1997
PMID: 9286332
Dendritic cells derived in vitro from acute myelogenous leukemia cells stimulate autologous, antileukemic T-cell responses.
Choudhury BA, Liang JC, Thomas EK, Flores-Romo L, Xie QS, Agusala K, Sutaria S, Sinha I, Champlin RE, Claxton DF., Blood 93(3), 1999
PMID: 9920826
A clinical grade cocktail of cytokines and PGE2 results in uniform maturation of human monocyte-derived dendritic cells: implications for immunotherapy.
Lee AW, Truong T, Bickham K, Fonteneau JF, Larsson M, Da Silva I, Somersan S, Thomas EK, Bhardwaj N., Vaccine 20 Suppl 4(), 2002
PMID: 12477423
Serum-free generation of antigen presenting cells from acute myeloid leukaemic blasts for active specific immunisation.
Houtenbos I, Westers TM, Stam AG, de Gruijl TD, Scheper RJ, Ossenkoppele GJ, van de Loosdrecht AA., Cancer Immunol. Immunother. 52(7), 2003
PMID: 12690520
Rapid generation of antigen-presenting cells from leukaemic blasts in acute myeloid leukaemia.
Westers TM, Stam AG, Scheper RJ, Regelink JC, Nieuwint AW, Schuurhuis GJ, van de Loosdrecht AA, Ossenkoppele GJ., Cancer Immunol. Immunother. 52(1), 2002
PMID: 12536236
Generation of mature dendritic cells fully capable of T helper type 1 polarization using OK-432 combined with prostaglandin E(2).
Sato M, Takayama T, Tanaka H, Konishi J, Suzuki T, Kaiga T, Tahara H., Cancer Sci. 94(12), 2003
PMID: 14662025
Serum-free generation and quantification of functionally active Leukemia-derived DC is possible from malignant blasts in acute myeloid leukemia and myelodysplastic syndromes.
Kufner S, Fleischer RP, Kroell T, Schmid C, Zitzelsberger H, Salih H, de Valle F, Treder W, Schmetzer HM., Cancer Immunol. Immunother. 54(10), 2005
PMID: 15789235
Dendritic cells (DCs) can be successfully generated from leukemic blasts in individual patients with AML or MDS: an evaluation of different methods.
Kremser A, Dressig J, Grabrucker C, Liepert A, Kroell T, Scholl N, Schmid C, Tischer J, Kufner S, Salih H, Kolb HJ, Schmetzer H., J. Immunother. 33(2), 2010
PMID: 20139775
Various 'dendritic cell antigens' are already expressed on uncultured blasts in acute myeloid leukemia and myelodysplastic syndromes.
Dreyssig J, Kremser A, Liepert A, Grabrucker C, Freudenreich M, Schmid C, Kroell T, Scholl N, Tischer J, Kufner S, Salih H, Kolb HJ, Schmetzer HM., Immunotherapy 3(9), 2011
PMID: 21913833
The quality and quantity of leukemia-derived dendritic cells from patients with acute myeloid leukemia and myelodysplastic syndrome are a predictive factor for the lytic potential of dendritic cells-primed leukemia-specific T cells.
Grabrucker C, Liepert A, Dreyig J, Kremser A, Kroell T, Freudenreich M, Schmid C, Schweiger C, Tischer J, Kolb HJ, Schmetzer H., J. Immunother. 33(5), 2010
PMID: 20463595
Quality of T-cells after stimulation with leukemia-derived dendritic cells (DC) from patients with acute myeloid leukemia (AML) or myeloid dysplastic syndrome (MDS) is predictive for their leukemia cytotoxic potential.
Liepert A, Grabrucker C, Kremser A, Dreyssig J, Ansprenger C, Freudenreich M, Kroell T, Reibke R, Tischer J, Schweiger C, Schmid C, Kolb HJ, Schmetzer H., Cell. Immunol. 265(1), 2010
PMID: 20663492
The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes.
Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellstrom-Lindberg E, Tefferi A, Bloomfield CD., Blood 114(5), 2009
PMID: 19357394

AUTHOR UNKNOWN, 1995
Improved effector function of leukemia-specific T-lymphocyte clones trained with AML-derived dendritic cells.
Schuster FR, Buhmann R, Reuther S, Hubner B, Grabrucker C, Liepert A, Reibke R, Lichtner P, Yang T, Kroell T, Kolb HJ, Borkhardt A, Schmetzer H., Cancer Genomics Proteomics 5(5), 2008
PMID: 19129558
Progressive differentiation and selection of the fittest in the immune response.
Lanzavecchia A, Sallusto F., Nat. Rev. Immunol. 2(12), 2002
PMID: 12461571
Flow cytometric analysis of T cell proliferation in a mixed lymphocyte reaction with dendritic cells.
Nguyen XD, Eichler H, Dugrillon A, Piechaczek C, Braun M, Kluter H., J. Immunol. Methods 275(1-2), 2003
PMID: 12667670
The fluorolysis assay, a highly sensitive method for measuring the cytolytic activity of T cells at very low numbers.
Kienzle N, Olver S, Buttigieg K, Kelso A., J. Immunol. Methods 267(2), 2002
PMID: 12165431
Leukemia-derived dendritic cells can be generated from blood or bone marrow cells from patients with acute myeloid leukaemia: a methodological approach under serum-free culture conditions.
Kufner S, Zitzelsberger H, Kroell T, Pelka-Fleischer R, Salem A, de Valle F, Schweiger C, Nuessler V, Schmid C, Kolb HJ, Schmetzer HM., Scand. J. Immunol. 62(1), 2005
PMID: 16091128
Oligoclonality of CD8+ T cells in multiple sclerosis.
Monteiro J, Hingorani R, Peroglizzi R, Apatoff B, Gregersen PK., Autoimmunity 23(2), 1996
PMID: 8871768
Oligoclonality of tumor-infiltrating lymphocytes from human melanomas.
Puisieux I, Even J, Pannetier C, Jotereau F, Favrot M, Kourilsky P., J. Immunol. 153(6), 1994
PMID: 8077684
Analysis of T-cell repertoire in hepatitis-associated aplastic anemia.
Lu J, Basu A, Melenhorst JJ, Young NS, Brown KE., Blood 103(12), 2004
PMID: 14988156
Spectratype/immunoscope analysis of the expressed TCR repertoire.
Currier JR, Robinson MA., Curr Protoc Immunol Chapter 10(), 2001
PMID: 18432693
Contributions of CD4+, CD8+, and CD4+CD8+ T cells to skewing within the peripheral T cell receptor beta chain repertoire of healthy macaques.
Currier JR, Stevenson KS, Kehn PJ, Zheng K, Hirsch VM, Robinson MA., Hum. Immunol. 60(3), 1999
PMID: 10321957

H, Bone Marrow Transpl 39(1), 2007
Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation.
Childs R, Chernoff A, Contentin N, Bahceci E, Schrump D, Leitman S, Read EJ, Tisdale J, Dunbar C, Linehan WM, Young NS, Barrett AJ., N. Engl. J. Med. 343(11), 2000
PMID: 10984562
CD8-depleted donor lymphocyte infusion as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation.
Giralt S, Hester J, Huh Y, Hirsch-Ginsberg C, Rondon G, Seong D, Lee M, Gajewski J, Van Besien K, Khouri I, Mehra R, Przepiorka D, Korbling M, Talpaz M, Kantarjian H, Fischer H, Deisseroth A, Champlin R., Blood 86(11), 1995
PMID: 7492795
Infusion of CD4+ donor lymphocytes induces the expansion of CD8+ donor T cells with cytolytic activity directed against recipient hematopoietic cells.
Zorn E, Wang KS, Hochberg EP, Canning C, Alyea EP, Soiffer RJ, Ritz J., Clin. Cancer Res. 8(7), 2002
PMID: 12114403
Resurrecting CD8+ suppressor T cells.
Chess L, Jiang H., Nat. Immunol. 5(5), 2004
PMID: 15116110
Regulation of immune responses by T cells.
Jiang H, Chess L., N. Engl. J. Med. 354(11), 2006
PMID: 16540617
Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing.
Freeman JD, Warren RL, Webb JR, Nelson BH, Holt RA., Genome Res. 19(10), 2009
PMID: 19541912
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22441559
PubMed | Europe PMC

Suchen in

Google Scholar