Mannose 6 dephosphorylation of lysosomal proteins mediated by Acid phosphatases acp2 and acp5

Makrypidi G, Damme M, Müller-Loennies S, Trusch M, Schmidt B, Schlüter H, Heeren J, Lübke T, Saftig P, Braulke T (2012)
Molecular and cellular biology 32(4): 774-782.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Makrypidi, Georgia; Damme, MarkusUniBi; Müller-Loennies, Sven; Trusch, Maria; Schmidt, Bernhard; Schlüter, Hartmut; Heeren, Joerg; Lübke, TorbenUniBi ; Saftig, Paul; Braulke, Thomas
Abstract / Bemerkung
Mannose 6-phosphate (Man6P) residues represent a recognition signal required for efficient receptor-dependent transport of soluble lysosomal proteins to lysosomes. Upon arrival, the proteins are rapidly dephosphorylated. We used mice deficient for the lysosomal acid phosphatase Acp2 or Acp5 or lacking both phosphatases (Acp2/Acp5(-/-)) to examine their role in dephosphorylation of Man6P-containing proteins. Two-dimensional (2D) Man6P immunoblot analyses of tyloxapol-purified lysosomal fractions revealed an important role of Acp5 acting in concert with Acp2 for complete dephosphorylation of lysosomal proteins. The most abundant lysosomal substrates of Acp2 and Acp5 were identified by Man6P affinity chromatography and mass spectrometry. Depending on the presence of Acp2 or Acp5, the isoelectric point of the lysosomal cholesterol-binding protein Npc2 ranged between 7.0 and 5.4 and may thus regulate its interaction with negatively charged lysosomal membranes at acidic pH. Correspondingly, unesterified cholesterol was found to accumulate in lysosomes of cultured hepatocytes of Acp2/Acp5(-/-) mice. The data demonstrate that dephosphorylation of Man6P-containing lysosomal proteins requires the concerted action of Acp2 and Acp5 and is needed for hydrolysis and removal of degradation products.
Erscheinungsjahr
2012
Zeitschriftentitel
Molecular and cellular biology
Band
32
Ausgabe
4
Seite(n)
774-782
ISSN
0270-7306
Page URI
https://pub.uni-bielefeld.de/record/2471754

Zitieren

Makrypidi G, Damme M, Müller-Loennies S, et al. Mannose 6 dephosphorylation of lysosomal proteins mediated by Acid phosphatases acp2 and acp5. Molecular and cellular biology. 2012;32(4):774-782.
Makrypidi, G., Damme, M., Müller-Loennies, S., Trusch, M., Schmidt, B., Schlüter, H., Heeren, J., et al. (2012). Mannose 6 dephosphorylation of lysosomal proteins mediated by Acid phosphatases acp2 and acp5. Molecular and cellular biology, 32(4), 774-782. doi:10.1128/MCB.06195-11
Makrypidi, Georgia, Damme, Markus, Müller-Loennies, Sven, Trusch, Maria, Schmidt, Bernhard, Schlüter, Hartmut, Heeren, Joerg, Lübke, Torben, Saftig, Paul, and Braulke, Thomas. 2012. “Mannose 6 dephosphorylation of lysosomal proteins mediated by Acid phosphatases acp2 and acp5”. Molecular and cellular biology 32 (4): 774-782.
Makrypidi, G., Damme, M., Müller-Loennies, S., Trusch, M., Schmidt, B., Schlüter, H., Heeren, J., Lübke, T., Saftig, P., and Braulke, T. (2012). Mannose 6 dephosphorylation of lysosomal proteins mediated by Acid phosphatases acp2 and acp5. Molecular and cellular biology 32, 774-782.
Makrypidi, G., et al., 2012. Mannose 6 dephosphorylation of lysosomal proteins mediated by Acid phosphatases acp2 and acp5. Molecular and cellular biology, 32(4), p 774-782.
G. Makrypidi, et al., “Mannose 6 dephosphorylation of lysosomal proteins mediated by Acid phosphatases acp2 and acp5”, Molecular and cellular biology, vol. 32, 2012, pp. 774-782.
Makrypidi, G., Damme, M., Müller-Loennies, S., Trusch, M., Schmidt, B., Schlüter, H., Heeren, J., Lübke, T., Saftig, P., Braulke, T.: Mannose 6 dephosphorylation of lysosomal proteins mediated by Acid phosphatases acp2 and acp5. Molecular and cellular biology. 32, 774-782 (2012).
Makrypidi, Georgia, Damme, Markus, Müller-Loennies, Sven, Trusch, Maria, Schmidt, Bernhard, Schlüter, Hartmut, Heeren, Joerg, Lübke, Torben, Saftig, Paul, and Braulke, Thomas. “Mannose 6 dephosphorylation of lysosomal proteins mediated by Acid phosphatases acp2 and acp5”. Molecular and cellular biology 32.4 (2012): 774-782.

17 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

HIV Infection Induces Extracellular Cathepsin B Uptake and Damage to Neurons.
Cantres-Rosario YM, Ortiz-Rodríguez SC, Santos-Figueroa AG, Plaud M, Negron K, Cotto B, Langford D, Melendez LM., Sci Rep 9(1), 2019
PMID: 31142756
The Lysosomal Protein Arylsulfatase B Is a Key Enzyme Involved in Skeletal Turnover.
Pohl S, Angermann A, Jeschke A, Hendrickx G, Yorgan TA, Makrypidi-Fraune G, Steigert A, Kuehn SC, Rolvien T, Schweizer M, Koehne T, Neven M, Winter O, Velho RV, Albers J, Streichert T, Pestka JM, Baldauf C, Breyer S, Stuecker R, Muschol N, Cox TM, Saftig P, Paganini C, Rossi A, Amling M, Braulke T, Schinke T., J Bone Miner Res 33(12), 2018
PMID: 30075049
Acid phosphatase 2 (ACP2) is required for membrane fusion during influenza virus entry.
Lee J, Kim J, Son K, d'Alexandry d'Orengiani AP, Min JY., Sci Rep 7(), 2017
PMID: 28272419
Single-chain antibody-fragment M6P-1 possesses a mannose 6-phosphate monosaccharide-specific binding pocket that distinguishes N-glycan phosphorylation in a branch-specific manner†.
Blackler RJ, Evans DW, Smith DF, Cummings RD, Brooks CL, Braulke T, Liu X, Evans SV, Müller-Loennies S., Glycobiology 26(2), 2016
PMID: 26503547
The extended human PTPome: a growing tyrosine phosphatase family.
Alonso A, Pulido R., FEBS J 283(8), 2016
PMID: 26573778
Cerebellar Expression of the Neurotrophin Receptor p75 in Naked-Ataxia Mutant Mouse.
Rahimi Balaei M, Jiao X, Ashtari N, Afsharinezhad P, Ghavami S, Marzban H., Int J Mol Sci 17(1), 2016
PMID: 26784182
Lrp1/LDL Receptor Play Critical Roles in Mannose 6-Phosphate-Independent Lysosomal Enzyme Targeting.
Markmann S, Thelen M, Cornils K, Schweizer M, Brocke-Ahmadinejad N, Willnow T, Heeren J, Gieselmann V, Braulke T, Kollmann K., Traffic 16(7), 2015
PMID: 25786328
Mannose 6-phosphate-independent Lysosomal Sorting of LIMP-2.
Blanz J, Zunke F, Markmann S, Damme M, Braulke T, Saftig P, Schwake M., Traffic 16(10), 2015
PMID: 26219725
Interaction of glutaric aciduria type 1-related glutaryl-CoA dehydrogenase with mitochondrial matrix proteins.
Schmiesing J, Schlüter H, Ullrich K, Braulke T, Mühlhausen C., PLoS One 9(2), 2014
PMID: 24498361
Extending the mannose 6-phosphate glycoproteome by high resolution/accuracy mass spectrometry analysis of control and acid phosphatase 5-deficient mice.
Sleat DE, Sun P, Wiseman JA, Huang L, El-Banna M, Zheng H, Moore DF, Lobel P., Mol Cell Proteomics 12(7), 2013
PMID: 23478313
Regulation of lysosome biogenesis and functions in osteoclasts.
Lacombe J, Karsenty G, Ferron M., Cell Cycle 12(17), 2013
PMID: 23966172
Exploring the unique N-glycome of the opportunistic human pathogen Acanthamoeba.
Schiller B, Makrypidi G, Razzazi-Fazeli E, Paschinger K, Walochnik J, Wilson IB., J Biol Chem 287(52), 2012
PMID: 23139421

55 References

Daten bereitgestellt von Europe PubMed Central.

The phosphorylation of beta-glucuronidase oligosaccharides in mouse P388D1 cells.
Goldberg DE, Kornfeld S., J. Biol. Chem. 256(24), 1981
PMID: 7309750
Uteroferrin has N-asparagine-linked high-mannose-type oligosaccharides that contain mannose 6-phosphate.
Baumbach GA, Saunders PT, Bazer FW, Roberts RM., Proc. Natl. Acad. Sci. U.S.A. 81(10), 1984
PMID: 6587337
Synthesis and transport of lysosomal acid phosphatase in normal and I-cell fibroblasts.
Lemansky P, Gieselmann V, Hasilik A, von Figura K., J. Biol. Chem. 260(15), 1985
PMID: 3160696
Sequential processing of lysosomal acid phosphatase by a cytoplasmic thiol proteinase and a lysosomal aspartyl proteinase.
Gottschalk S, Waheed A, Schmidt B, Laidler P, von Figura K., EMBO J. 8(11), 1989
PMID: 2684640
Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis.
Hayman AR, Jones SJ, Boyde A, Foster D, Colledge WH, Carlton MB, Evans MJ, Cox TM., Development 122(10), 1996
PMID: 8898228
Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels.
Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, Mortensen P, Shevchenko A, Boucherie H, Mann M., Proc. Natl. Acad. Sci. U.S.A. 93(25), 1996
PMID: 8962070
Mice deficient in lysosomal acid phosphatase develop lysosomal storage in the kidney and central nervous system.
Saftig P, Hartmann D, Lullmann-Rauch R, Wolff J, Evers M, Koster A, Hetman M, von Figura K, Peters C., J. Biol. Chem. 272(30), 1997
PMID: 9228031
Proteolysis of insulin-like growth factors (IGF) and IGF binding proteins by cathepsin D.
Claussen M, Kubler B, Wendland M, Neifer K, Schmidt B, Zapf J, Braulke T., Endocrinology 138(9), 1997
PMID: 9275067
Protein measurement with the Folin phenol reagent.
LOWRY OH, ROSEBROUGH NJ, FARR AL, RANDALL RJ., J. Biol. Chem. 193(1), 1951
PMID: 14907713
[Effect of the injection of Triton WR 1339 on the hepatic lysosomes of the rat.]
WATTIAUX R, WIBO M, BAUDHUIN P., Arch. Int. Physiol. Biochim. 71(), 1963
PMID: 13999241
Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue.
DE DUVE C, PRESSMAN BC, GIANETTO R, WATTIAUX R, APPELMANS F., Biochem. J. 60(4), 1955
PMID: 13249955
Lysosomal metabolism of glycoproteins.
Winchester B., Glycobiology 15(6), 2005
PMID: 15647514
Lysosomal membrane proteomics and biogenesis of lysosomes.
Bagshaw RD, Mahuran DJ, Callahan JW., Mol. Neurobiol. 32(1), 2005
PMID: 16077181
Mucolipidosis II is caused by mutations in GNPTA encoding the alpha/beta GlcNAc-1-phosphotransferase.
Tiede S, Storch S, Lubke T, Henrissat B, Bargal R, Raas-Rothschild A, Braulke T., Nat. Med. 11(10), 2005
PMID: 16200072
Proteomic analysis of lysosomal acid hydrolases secreted by osteoclasts: implications for lytic enzyme transport and bone metabolism.
Czupalla C, Mansukoski H, Riedl T, Thiel D, Krause E, Hoflack B., Mol. Cell Proteomics 5(1), 2005
PMID: 16215273
Protein sensors for membrane sterols.
Goldstein JL, DeBose-Boyd RA, Brown MS., Cell 124(1), 2006
PMID: 16413480
Identification of sites of mannose 6-phosphorylation on lysosomal proteins.
Sleat DE, Zheng H, Qian M, Lobel P., Mol. Cell Proteomics 5(4), 2006
PMID: 16399764
Integral and associated lysosomal membrane proteins.
Schroder B, Wrocklage C, Pan C, Jager R, Kosters B, Schafer H, Elsasser HP, Mann M, Hasilik A., Traffic 8(12), 2007
PMID: 17897319
Increased expression of lysosomal acid phosphatase in CLN3-defective cells and mouse brain tissue.
Pohl S, Mitchison HM, Kohlschutter A, van Diggelen O, Braulke T, Storch S., J. Neurochem. 103(6), 2007
PMID: 17868323
NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes.
Infante RE, Wang ML, Radhakrishnan A, Kwon HJ, Brown MS, Goldstein JL., Proc. Natl. Acad. Sci. U.S.A. 105(40), 2008
PMID: 18772377
Regulation of sterol transport between membranes and NPC2.
Xu Z, Farver W, Kodukula S, Storch J., Biochemistry 47(42), 2008
PMID: 18823126
Acid phosphatase 5 is responsible for removing the mannose 6-phosphate recognition marker from lysosomal proteins.
Sun P, Sleat DE, Lecocq M, Hayman AR, Jadot M, Lobel P., Proc. Natl. Acad. Sci. U.S.A. 105(43), 2008
PMID: 18940929
Proteomics of the lysosome.
Lubke T, Lobel P, Sleat DE., Biochim. Biophys. Acta 1793(4), 2008
PMID: 18977398
Principles of lysosomal membrane degradation: Cellular topology and biochemistry of lysosomal lipid degradation.
Schulze H, Kolter T, Sandhoff K., Biochim. Biophys. Acta 1793(4), 2008
PMID: 19014978
Sorting of lysosomal proteins.
Braulke T, Bonifacino JS., Biochim. Biophys. Acta 1793(4), 2008
PMID: 19046998
Lysosomal disorders: from storage to cellular damage.
Ballabio A, Gieselmann V., Biochim. Biophys. Acta 1793(4), 2008
PMID: 19111581
Molecular and cellular basis of lysosomal transmembrane protein dysfunction.
Ruivo R, Anne C, Sagne C, Gasnier B., Biochim. Biophys. Acta 1793(4), 2008
PMID: 19146888
Glycosylation- and phosphorylation-dependent intracellular transport of lysosomal hydrolases.
Pohl S, Marschner K, Storch S, Braulke T., Biol. Chem. 390(7), 2009
PMID: 19426136
Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol.
Kwon HJ, Abi-Mosleh L, Wang ML, Deisenhofer J, Goldstein JL, Brown MS, Infante RE., Cell 137(7), 2009
PMID: 19563754
Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function.
Saftig P, Klumperman J., Nat. Rev. Mol. Cell Biol. 10(9), 2009
PMID: 19672277
Impaired lysosomal trimming of N-linked oligosaccharides leads to hyperglycosylation of native lysosomal proteins in mice with alpha-mannosidosis.
Damme M, Morelle W, Schmidt B, Andersson C, Fogh J, Michalski JC, Lubke T., Mol. Cell. Biol. 30(1), 2010
PMID: 19884343
Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion.
Abdul-Hammed M, Breiden B, Adebayo MA, Babalola JO, Schwarzmann G, Sandhoff K., J. Lipid Res. 51(7), 2010
PMID: 20179319
The proteome of lysosomes.
Schroder BA, Wrocklage C, Hasilik A, Saftig P., Proteomics 10(22), 2010
PMID: 20957757
Brown adipose tissue activity controls triglyceride clearance.
Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C, Eychmuller A, Gordts PL, Rinninger F, Bruegelmann K, Freund B, Nielsen P, Merkel M, Heeren J., Nat. Med. 17(2), 2011
PMID: 21258337
A key enzyme in the biogenesis of lysosomes is a protease that regulates cholesterol metabolism.
Marschner K, Kollmann K, Schweizer M, Braulke T, Pohl S., Science 333(6038), 2011
PMID: 21719679
Probability-based protein identification by searching sequence databases using mass spectrometry data.
Perkins DN, Pappin DJ, Creasy DM, Cottrell JS., Electrophoresis 20(18), 1999
PMID: 10612281
Overlapping functions of lysosomal acid phosphatase (LAP) and tartrate-resistant acid phosphatase (Acp5) revealed by doubly deficient mice.
Suter A, Everts V, Boyde A, Jones SJ, Lullmann-Rauch R, Hartmann D, Hayman AR, Cox TM, Evans MJ, Meister T, von Figura K, Saftig P., Development 128(23), 2001
PMID: 11731469
The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003.
Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I, Pilbout S, Schneider M., Nucleic Acids Res. 31(1), 2003
PMID: 12520024
Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway.
Mobius W, van Donselaar E, Ohno-Iwashita Y, Shimada Y, Heijnen HF, Slot JW, Geuze HJ., Traffic 4(4), 2003
PMID: 12694561
Biosynthesis of lysosomal enzymes in fibroblasts. Phosphorylation of mannose residues.
Hasilik A, Neufeld EF., J. Biol. Chem. 255(10), 1980
PMID: 6989822
Structural studies of phosphorylated high mannose-type oligosaccharides.
Varki A, Kornfeld S., J. Biol. Chem. 255(22), 1980
PMID: 7430158
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22158965
PubMed | Europe PMC

Suchen in

Google Scholar