Controlling complexity of RBF networks by similarity

Rückert U, Eickhoff R (2007)
In: ESANN. 181-186.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Rückert, UlrichUniBi; Eickhoff, Ralf
Abstract / Bemerkung
Using radial basis function networks for function approximation tasks suffers from unavailable knowledge about an adequate network size. In this work, a measuring technique is proposed which can control the model complexity and is based on the correlation coefficient between two basis functions. Simulation results show good performance and, therefore, this technique can be integrated in the RBF training procedure.
Erscheinungsjahr
2007
Titel des Konferenzbandes
ESANN
Seite(n)
181-186
Page URI
https://pub.uni-bielefeld.de/record/2289160

Zitieren

Rückert U, Eickhoff R. Controlling complexity of RBF networks by similarity. In: ESANN. 2007: 181-186.
Rückert, U., & Eickhoff, R. (2007). Controlling complexity of RBF networks by similarity. ESANN, 181-186.
Rückert, U., and Eickhoff, R. (2007). “Controlling complexity of RBF networks by similarity” in ESANN 181-186.
Rückert, U., & Eickhoff, R., 2007. Controlling complexity of RBF networks by similarity. In ESANN. pp. 181-186.
U. Rückert and R. Eickhoff, “Controlling complexity of RBF networks by similarity”, ESANN, 2007, pp.181-186.
Rückert, U., Eickhoff, R.: Controlling complexity of RBF networks by similarity. ESANN. p. 181-186. (2007).
Rückert, Ulrich, and Eickhoff, Ralf. “Controlling complexity of RBF networks by similarity”. ESANN. 2007. 181-186.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:57:36Z
MD5 Prüfsumme
14c9733ef86b097a2fedd05d1ec62b8b

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar