Tolerance of Radial-Basis Functions Against Stuck-At-Faults

Eickhoff R, Rückert U (2005)
In: Proceedings of the International Conference on Artificial Neural Networks (ICANN).(3697). Warsaw, Poland: 1003-1008.

Download
OA
Konferenzbeitrag | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
;
Abstract / Bemerkung
Neural networks are intended to be used in future nanoelectronic systems since neural architectures seem to be robust against malfunctioning elements and noise in their weights. In this paper we analyze the fault-tolerance of Radial Basis Function networks to Stuck- At-Faults at the trained weights and at the output of neurons. Moreover, we determine upper bounds on the mean square error arising from these faults.
Erscheinungsjahr
Titel des Konferenzbandes
Proceedings of the International Conference on Artificial Neural Networks (ICANN)
Zeitschriftennummer
3697
Seite
1003-1008
PUB-ID

Zitieren

Eickhoff R, Rückert U. Tolerance of Radial-Basis Functions Against Stuck-At-Faults. In: Proceedings of the International Conference on Artificial Neural Networks (ICANN). Warsaw, Poland; 2005: 1003-1008.
Eickhoff, R., & Rückert, U. (2005). Tolerance of Radial-Basis Functions Against Stuck-At-Faults. Proceedings of the International Conference on Artificial Neural Networks (ICANN), 1003-1008. Warsaw, Poland.
Eickhoff, R., and Rückert, U. (2005). “Tolerance of Radial-Basis Functions Against Stuck-At-Faults” in Proceedings of the International Conference on Artificial Neural Networks (ICANN) (Warsaw, Poland), 1003-1008.
Eickhoff, R., & Rückert, U., 2005. Tolerance of Radial-Basis Functions Against Stuck-At-Faults. In Proceedings of the International Conference on Artificial Neural Networks (ICANN). Warsaw, Poland, pp. 1003-1008.
R. Eickhoff and U. Rückert, “Tolerance of Radial-Basis Functions Against Stuck-At-Faults”, Proceedings of the International Conference on Artificial Neural Networks (ICANN), Warsaw, Poland: 2005, pp.1003-1008.
Eickhoff, R., Rückert, U.: Tolerance of Radial-Basis Functions Against Stuck-At-Faults. Proceedings of the International Conference on Artificial Neural Networks (ICANN). p. 1003-1008. Warsaw, Poland (2005).
Eickhoff, Ralf, and Rückert, Ulrich. “Tolerance of Radial-Basis Functions Against Stuck-At-Faults”. Proceedings of the International Conference on Artificial Neural Networks (ICANN). Warsaw, Poland, 2005. 1003-1008.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2011-10-26T11:32:16Z

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar