Analytical approach to massively parallel architectures for nanotechnologies

Jager B, Niemann J-C, Rückert U (2005)
In: Application-Specific Systems, Architecture Processors, 2005. ASAP 2005. 16th IEEE International Conference on. IEEE: 268-275.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor*in
Jager, B.; Niemann, J.-C.; Rückert, UlrichUniBi
Abstract / Bemerkung
In the emerging field of single-chip multiprocessors (CMP) analytical models of performance and power consumption are necessary for design space exploration and the analysis of existing architectures. In the light of ever decreasing structure sizes in microchips the scalability of proposed CMPs is of great interest to the developers. Looking even further into the future at the possibilities offered by, e. g., nanotechnology, a set of such models may help to identify promising architectures and possible bottlenecks even before the enabling technologies exist. In this paper, we present our current work in this area in the form of two models. The first and very basic model is based on Amdahl’s law and gives a first promising outlook on chip multiprocessing. Based on the more complex BSP model our second model takes the on-chip communication into account and thus allows a much more detailed look at the architecture. In both cases, basic laws of circuit technology have been combined with the underlying models that now take the effects of device scaling into account. Later we will also present the GigaNetIC 1 architecture, a CMP developed by our research group. It will then be analyzed by applying the BSP-based model.
Stichworte
BSP model; microprocessor chips; multiprocessing systems; single-chip multiprocessor; power consumption; parallel architecture; on-chip communication; nanotechnology; microchip; design space exploration and; GigaNetIC architecture; chip multiprocessing; circuit technology; nanotechnology; Amdahl law; parallel architectures; system-on-chip; power consumption
Erscheinungsjahr
2005
Titel des Konferenzbandes
Application-Specific Systems, Architecture Processors, 2005. ASAP 2005. 16th IEEE International Conference on
Seite(n)
268-275
ISBN
0769524079
ISSN
1063-6862
Page URI
https://pub.uni-bielefeld.de/record/2286292

Zitieren

Jager B, Niemann J-C, Rückert U. Analytical approach to massively parallel architectures for nanotechnologies. In: Application-Specific Systems, Architecture Processors, 2005. ASAP 2005. 16th IEEE International Conference on. IEEE; 2005: 268-275.
Jager, B., Niemann, J. - C., & Rückert, U. (2005). Analytical approach to massively parallel architectures for nanotechnologies. Application-Specific Systems, Architecture Processors, 2005. ASAP 2005. 16th IEEE International Conference on, 268-275. IEEE. doi:10.1109/ASAP.2005.14
Jager, B., Niemann, J. - C., and Rückert, U. (2005). “Analytical approach to massively parallel architectures for nanotechnologies” in Application-Specific Systems, Architecture Processors, 2005. ASAP 2005. 16th IEEE International Conference on (IEEE), 268-275.
Jager, B., Niemann, J.-C., & Rückert, U., 2005. Analytical approach to massively parallel architectures for nanotechnologies. In Application-Specific Systems, Architecture Processors, 2005. ASAP 2005. 16th IEEE International Conference on. IEEE, pp. 268-275.
B. Jager, J.-C. Niemann, and U. Rückert, “Analytical approach to massively parallel architectures for nanotechnologies”, Application-Specific Systems, Architecture Processors, 2005. ASAP 2005. 16th IEEE International Conference on, IEEE, 2005, pp.268-275.
Jager, B., Niemann, J.-C., Rückert, U.: Analytical approach to massively parallel architectures for nanotechnologies. Application-Specific Systems, Architecture Processors, 2005. ASAP 2005. 16th IEEE International Conference on. p. 268-275. IEEE (2005).
Jager, B., Niemann, J.-C., and Rückert, Ulrich. “Analytical approach to massively parallel architectures for nanotechnologies”. Application-Specific Systems, Architecture Processors, 2005. ASAP 2005. 16th IEEE International Conference on. IEEE, 2005. 268-275.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar
ISBN Suche