Enhancing Fault Tolerance of Radial Basis Functions
Eickhoff R, Rückert U (2006)
In: Neural Networks, 2006. IJCNN '06. International Joint Conference on. Institute of Electrical and Electronics Engineers (Ed); Piscataway, NJ: IEEE: 5066-5073.
Konferenzbeitrag
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Eickhoff, R.;
Rückert, UlrichUniBi
herausgebende Körperschaft
Institute of Electrical and Electronics Engineers
Abstract / Bemerkung
The challenge of future nanoelectronic applications,
e.g. in quantum computing or in molecular computing,
is to assure reliable computation facing a growing number
of malfunctioning and failing computational units. Modeled
on biology artificial neural networks are intended to be one
preferred architecture for these applications because their
architectures allow distributed information processing and,
therefore, will result in tolerance to malfunctioning neurons
and in robustness to noise. In this work, methods to enhance
fault tolerance to permanently failing neurons of Radial Basis
Function networks are investigated for function approximation
applications. Therefore, a relevance measure is introduced
which can be used to enhance the fault tolerance or, on the
contrary, to control the network complexity if it is used for
pruning.
Stichworte
distributed information processing;
function approximation application;
radial basis function networks;
biology artificial neural networks;
fault tolerance enhancement;
radial basis function networks;
function approximation;
fault tolerance
Erscheinungsjahr
2006
Titel des Konferenzbandes
Neural Networks, 2006. IJCNN '06. International Joint Conference on
Seite(n)
5066-5073
ISBN
0780394909
Page URI
https://pub.uni-bielefeld.de/record/2286083
Zitieren
Eickhoff R, Rückert U. Enhancing Fault Tolerance of Radial Basis Functions. In: Institute of Electrical and Electronics Engineers, ed. Neural Networks, 2006. IJCNN '06. International Joint Conference on. Piscataway, NJ: IEEE; 2006: 5066-5073.
Eickhoff, R., & Rückert, U. (2006). Enhancing Fault Tolerance of Radial Basis Functions. In Institute of Electrical and Electronics Engineers (Ed.), Neural Networks, 2006. IJCNN '06. International Joint Conference on (pp. 5066-5073). Piscataway, NJ: IEEE. https://doi.org/10.1109/IJCNN.2006.247234
Eickhoff, R., and Rückert, Ulrich. 2006. “Enhancing Fault Tolerance of Radial Basis Functions”. In Neural Networks, 2006. IJCNN '06. International Joint Conference on, ed. Institute of Electrical and Electronics Engineers, 5066-5073. Piscataway, NJ: IEEE.
Eickhoff, R., and Rückert, U. (2006). “Enhancing Fault Tolerance of Radial Basis Functions” in Neural Networks, 2006. IJCNN '06. International Joint Conference on, Institute of Electrical and Electronics Engineers ed. (Piscataway, NJ: IEEE), 5066-5073.
Eickhoff, R., & Rückert, U., 2006. Enhancing Fault Tolerance of Radial Basis Functions. In Institute of Electrical and Electronics Engineers, ed. Neural Networks, 2006. IJCNN '06. International Joint Conference on. Piscataway, NJ: IEEE, pp. 5066-5073.
R. Eickhoff and U. Rückert, “Enhancing Fault Tolerance of Radial Basis Functions”, Neural Networks, 2006. IJCNN '06. International Joint Conference on, Institute of Electrical and Electronics Engineers, ed., Piscataway, NJ: IEEE, 2006, pp.5066-5073.
Eickhoff, R., Rückert, U.: Enhancing Fault Tolerance of Radial Basis Functions. In: Institute of Electrical and Electronics Engineers (ed.) Neural Networks, 2006. IJCNN '06. International Joint Conference on. p. 5066-5073. IEEE, Piscataway, NJ (2006).
Eickhoff, R., and Rückert, Ulrich. “Enhancing Fault Tolerance of Radial Basis Functions”. Neural Networks, 2006. IJCNN '06. International Joint Conference on. Ed. Institute of Electrical and Electronics Engineers. Piscataway, NJ: IEEE, 2006. 5066-5073.