Self-Optimizing Human-Robot Systems for Search and Rescue in Disaster Scenarios

Witkowski U, Herbrechtsmeier S, Tanoto A, El Habbal MAM, Penders J, Alboul L, Gancet J (2008)
In: Proceedings of the 7th International Heinz Nixdorf Symposium.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Witkowski, Ulf; Herbrechtsmeier, StefanUniBi; Tanoto, Andry; El Habbal, Mohamed Ahmed Mostafa; Penders, Jacques; Alboul, Lyuba; Gancet, J.
Abstract / Bemerkung
The increasing capabilities of robot systems enable new fields of practical applica- tions for individual robots as well as multi-robot systems. But for some applica- tion scenarios like a fire or earthquake disaster current robots are still too limited to act fully autonomously in the disaster area. To overcome these limitations we consider a heterogeneous team of humans and robots complementing each other. Core application considered in this paper is a large burning warehouse with smoke making it difficult for fire fighters to search the building and to orientate them- selves inside the warehouse. Therefore, an assisting team of robots is surrounding the fire fighters searching the proximity, providing orientation data, and establish- ing a wireless communication infrastructure on a basis of a mobile ad-hoc net- work. The adaptation of the robots is achieved by applying principles of self- optimization on different levels of the human-robot system. In this paper, we are considering self-optimization inside an individual robot to optimize its behaviour, within a group of robots, and in the entire system compris- ing of robots and humans. The focus of the optimization is the distribution of ro- bots by applying swarming behaviour for forming a mobile ad-hoc communica- tion network and performing map building.
Erscheinungsjahr
2008
Titel des Konferenzbandes
Proceedings of the 7th International Heinz Nixdorf Symposium
Page URI
https://pub.uni-bielefeld.de/record/2278710

Zitieren

Witkowski U, Herbrechtsmeier S, Tanoto A, et al. Self-Optimizing Human-Robot Systems for Search and Rescue in Disaster Scenarios. In: Proceedings of the 7th International Heinz Nixdorf Symposium. 2008.
Witkowski, U., Herbrechtsmeier, S., Tanoto, A., El Habbal, M. A. M., Penders, J., Alboul, L., & Gancet, J. (2008). Self-Optimizing Human-Robot Systems for Search and Rescue in Disaster Scenarios. Proceedings of the 7th International Heinz Nixdorf Symposium
Witkowski, Ulf, Herbrechtsmeier, Stefan, Tanoto, Andry, El Habbal, Mohamed Ahmed Mostafa, Penders, Jacques, Alboul, Lyuba, and Gancet, J. 2008. “Self-Optimizing Human-Robot Systems for Search and Rescue in Disaster Scenarios”. In Proceedings of the 7th International Heinz Nixdorf Symposium.
Witkowski, U., Herbrechtsmeier, S., Tanoto, A., El Habbal, M. A. M., Penders, J., Alboul, L., and Gancet, J. (2008). “Self-Optimizing Human-Robot Systems for Search and Rescue in Disaster Scenarios” in Proceedings of the 7th International Heinz Nixdorf Symposium.
Witkowski, U., et al., 2008. Self-Optimizing Human-Robot Systems for Search and Rescue in Disaster Scenarios. In Proceedings of the 7th International Heinz Nixdorf Symposium.
U. Witkowski, et al., “Self-Optimizing Human-Robot Systems for Search and Rescue in Disaster Scenarios”, Proceedings of the 7th International Heinz Nixdorf Symposium, 2008.
Witkowski, U., Herbrechtsmeier, S., Tanoto, A., El Habbal, M.A.M., Penders, J., Alboul, L., Gancet, J.: Self-Optimizing Human-Robot Systems for Search and Rescue in Disaster Scenarios. Proceedings of the 7th International Heinz Nixdorf Symposium. (2008).
Witkowski, Ulf, Herbrechtsmeier, Stefan, Tanoto, Andry, El Habbal, Mohamed Ahmed Mostafa, Penders, Jacques, Alboul, Lyuba, and Gancet, J. “Self-Optimizing Human-Robot Systems for Search and Rescue in Disaster Scenarios”. Proceedings of the 7th International Heinz Nixdorf Symposium. 2008.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:57:34Z
MD5 Prüfsumme
fc35172f7a0e05a68486f7286b39d60b


Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar