The dynamic wave expansion neural network model for robot motion planning in time-varying environments

Lebedev DV, Steil JJ, Ritter H (2005)
Neural Networks 18(3): 267-285.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Erscheinungsjahr
2005
Zeitschriftentitel
Neural Networks
Band
18
Ausgabe
3
Seite(n)
267-285
ISSN
0893-6080
Page URI
https://pub.uni-bielefeld.de/record/2142195

Zitieren

Lebedev DV, Steil JJ, Ritter H. The dynamic wave expansion neural network model for robot motion planning in time-varying environments. Neural Networks. 2005;18(3):267-285.
Lebedev, D. V., Steil, J. J., & Ritter, H. (2005). The dynamic wave expansion neural network model for robot motion planning in time-varying environments. Neural Networks, 18(3), 267-285. https://doi.org/10.1016/j.neunet.2005.01.004
Lebedev, Dmitry V., Steil, Jochen J., and Ritter, Helge. 2005. “The dynamic wave expansion neural network model for robot motion planning in time-varying environments”. Neural Networks 18 (3): 267-285.
Lebedev, D. V., Steil, J. J., and Ritter, H. (2005). The dynamic wave expansion neural network model for robot motion planning in time-varying environments. Neural Networks 18, 267-285.
Lebedev, D.V., Steil, J.J., & Ritter, H., 2005. The dynamic wave expansion neural network model for robot motion planning in time-varying environments. Neural Networks, 18(3), p 267-285.
D.V. Lebedev, J.J. Steil, and H. Ritter, “The dynamic wave expansion neural network model for robot motion planning in time-varying environments”, Neural Networks, vol. 18, 2005, pp. 267-285.
Lebedev, D.V., Steil, J.J., Ritter, H.: The dynamic wave expansion neural network model for robot motion planning in time-varying environments. Neural Networks. 18, 267-285 (2005).
Lebedev, Dmitry V., Steil, Jochen J., and Ritter, Helge. “The dynamic wave expansion neural network model for robot motion planning in time-varying environments”. Neural Networks 18.3 (2005): 267-285.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Recurrent Spiking Networks Solve Planning Tasks.
Rueckert E, Kappel D, Tanneberg D, Pecevski D, Peters J., Sci Rep 6(), 2016
PMID: 26888174
Rapid, parallel path planning by propagating wavefronts of spiking neural activity.
Ponulak F, Hopfield JJ., Front Comput Neurosci 7(), 2013
PMID: 23882213
Neural network architecture for cognitive navigation in dynamic environments.
Villacorta-Atienza JA, Makarov VA., IEEE Trans Neural Netw Learn Syst 24(12), 2013
PMID: 24805224
Real-time robot path planning based on a modified pulse-coupled neural network model.
Qu H, Yang SX, Willms AR, Yi Z., IEEE Trans Neural Netw 20(11), 2009
PMID: 19775961
Real-time robot path planning via a distance-propagating dynamic system with obstacle clearance.
Willms AR, Yang SX., IEEE Trans Syst Man Cybern B Cybern 38(3), 2008
PMID: 18558550

60 References

Daten bereitgestellt von Europe PubMed Central.

Neural network implementation for the optimal path problem
Agreev, Journal of Computer and System Sciences International 37(), 1998

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
A random sampling scheme for path planning
Barraquand, International Journal of Robotics Research 16(), 1997
Robot motion planning: A distributed representation approach
Barraquand, International Journal of Robotics Research 10(), 1991

AUTHOR UNKNOWN, 0
Route finding by neural nets
Bugmann, 1995

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Neural robot path planning: The maze problem
Dracopoulos, Neural Computing and Application 7(), 1998
Using genetic algorithms to solve the motion planning problem
Eldershaw, Journal of Universal Computer Science 6(), 2000
Occupancy grids: A stochastic spatial representation for active robot perception
Elfes, 1991
Motion planning in dynamic environments using velocity obstacles
Fiorini, International Journal of Robotics Research 17(), 1998

AUTHOR UNKNOWN, 0
Neural network dynamics for path planning and obstacle avoidance
Glasius, Neural Networks 8(), 1995
A biologically inspired neural net for trajectory formation and obstacle avoidance.
Glasius R, Komoda A, Gielen SC., Biol Cybern 74(6), 1996
PMID: 8672558
Nonlinear neural networks: Principles, mechanisms, and architectures
Grossberg, Neural Networks 1(), 1988
Fast motion planning by parallel processing—a review
Henrich, Journal of Intelligent and Robotic Systems 20(), 1997
Randomized kinodynamic motion planning with moving obstacles
Hsu, International Journal of Robotics Research 21(), 2002
Gross motion planning—a survey
Hwang, ACM Computing Surveys 24(), 1992
A comparative study of Dirichlet and Neumann conditions for path planning through harmonic functions
Karnik, 2002
Potential fields and neural networks
Kassim, 1995
Path planning for autonomous robots using neural networks
Kassim, Journal of Intelligent Systems 7(), 1997
The wave expansion neural network
Kassim, Neurocomputing 16(), 1997
Path planners based on the wave expansion neural network
Kassim, Robotics and Autonomous Systems 26(), 1999
Probabilistic roadmaps for path planning in high-dimensional space
Kavraki, IEEE Transactions on Robotics and Automation 12(), 1996
Real time obstacle avoidance for manipulators and mobile robots
Khatib, International Journal of Robotics Research 5(), 1986
A fast, three-layer neural network for path finding
Kindermann, Network: Computation in Neural Systems 7(), 1996
Incremental A*
Koenig, 2002

Latombe, 1991

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
2-degree-of-freedom robot path planning using cooperative neural fields
Lemmon, Neural Computation 3(), 1991
Robot path planning using fluid model
Li, Journal of Intelligent and Robotic Systems 21(), 1998
Practical connection between potential fields and neural networks
Liu, 2002
Spatial planning: A configuration space approach
Lozano-Pérez, IEEE Transactions on Computers C-32(), 1983
Dynamic path planning for a mobile automation with limited information on the environment
Lumelsky, IEEE Transactions on Automatic Control 31(), 1986
The Ariadne's clew algorithm
Mazer, Journal of Artificial Intelligence Research 9(), 1998
A neural network for collision-free path planning
Meng, 1992

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Fizzy maps: A new tool for mobile robot perception and planning
Oriolo, Journal of Robotic Systems 14(), 1997
Coevolutionary computation for path planning
Paredis, 1997
Exact robot navigation using artificial potential functions
Rimon, IEEE Transactions on Robotics and Automation 8(), 1992
Parallel path planning on the distributed array processor
Shu, Parallel Computing 21(), 1995

AUTHOR UNKNOWN, 0
Cellular neural networks for navigation of a mobile robot
Siemiatkowska, 1998

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Real-time autonomous robot navigation using VLSI neural networks
Tarassenko, 1991
Motion planning with complete knowledge using a colored SOM.
Vleugels J, Kok JN, Overmars M., Int J Neural Syst 8(5-6), 1997
PMID: 10065839

AUTHOR UNKNOWN, 0
A discrete-time reccurent neural network for shortest-path routing
Xia, IEEE Transactions on Automatic Control 45(), 2000
Neural network approaches to dynamic collision-free trajectory generation.
Yang SX, Meng M., IEEE Trans Syst Man Cybern B Cybern 31(3), 2001
PMID: 18244794

AUTHOR UNKNOWN, 0
A mobile robot navigation exploration algorithm
Zelinsky, IEEE Transactions on Robotics and Automation 8(), 1992
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 15896575
PubMed | Europe PMC

Suchen in

Google Scholar