The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate: sugar phosphotransferase system (PTS) in Corynebacterium glutamicum

Gaigalat L, Schlüter J-P, Hartmann M, Mormann S, Tauch A, Pühler A, Kalinowski J (2007)
BMC Molecular Biology 8(1): 104.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Gaigalat, Lars; Schlüter, Jan-Philip; Hartmann, Michelle; Mormann, Sascha; Tauch, AndreasUniBi; Pühler, AlfredUniBi ; Kalinowski, JörnUniBi
Abstract / Bemerkung
Background: The major uptake system responsible for the transport of fructose, glucose, and sucrose in Corynebacterium glutamicum ATCC 13032 is the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The genes encoding PTS components, namely ptsI, ptsH, and ptsF belong to the fructose-PTS gene cluster, whereas ptsG and ptsS are located in two separate regions of the C. glutamicum genome. Due to the localization within and adjacent to the fructose-PTS gene cluster, two genes coding for DeoR-type transcriptional regulators, cg2118 and sugR, are putative candidates involved in the transcriptional regulation of the fructose-PTS cluster genes. Results: Four transcripts of the extended fructose-PTS gene cluster that comprise the genes sugR-cg2116, ptsI, cg2118-fruK-ptsF, and ptsH, respectively, were characterized. In addition, it was shown that transcription of the fructose-PTS gene cluster is enhanced during growth on glucose or fructose when compared to acetate. Subsequently, the two genes sugR and cg2118 encoding for DeoR-type regulators were mutated and PTS gene transcription was found to be strongly enhanced in the presence of acetate only in the sugR deletion mutant. The SugR regulon was further characterized by microarray hybridizations using the sugR mutant and its parental strain, revealing that also the PTS genes ptsG and ptsS belong to this regulon. Binding of purified SugR repressor protein to a 21 bp sequence identified the SugR binding site as an AC-rich motif. The two experimentally identified SugR binding sites in the fructose-PTS gene cluster are located within or downstream of the mapped promoters, typical for transcriptional repressors. Effector studies using electrophoretic mobility shift assays (EMSA) revealed the fructose PTS-specific metabolite fructose-1-phosphate (F-1-P) as a highly efficient, negative effector of the SugR repressor, acting in the micromolar range. Beside F-1-P, other sugar-phosphates like fructose-1,6-bisphosphate (F-1,6-P) and glucose-6-phosphate (G-6-P) also negatively affect SugR-binding, but in millimolar concentrations. Conclusion: In C. glutamicum ATCC 13032 the DeoR-type regulator SugR acts as a pleiotropic transcriptional repressor of all described PTS genes. Thus, in contrast to most DeoR-type repressors described, SugR is able to act also on the transcription of the distantly located genes ptsG and ptsS of C. glutamicum. Transcriptional repression of the fructose-PTS gene cluster is observed during growth on acetate and transcription is derepressed in the presence of the PTS sugars glucose and fructose. This derepression of the fructose-PTS gene cluster is mainly modulated by the negative effector F-1-P, but reduced sensitivity to the other effectors, F-1,6-P or G-6-P might cause differential transcriptional regulation of genes of the general part of the PTS (ptsI, ptsH) and associated genes encoding sugar-specific functions (ptsF, ptsG, ptsS).
Erscheinungsjahr
2007
Zeitschriftentitel
BMC Molecular Biology
Band
8
Ausgabe
1
Art.-Nr.
104
ISSN
1471-2199
Page URI
https://pub.uni-bielefeld.de/record/1783727

Zitieren

Gaigalat L, Schlüter J-P, Hartmann M, et al. The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate: sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. BMC Molecular Biology. 2007;8(1): 104.
Gaigalat, L., Schlüter, J. - P., Hartmann, M., Mormann, S., Tauch, A., Pühler, A., & Kalinowski, J. (2007). The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate: sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. BMC Molecular Biology, 8(1), 104. https://doi.org/10.1186/1471-2199-8-104
Gaigalat, Lars, Schlüter, Jan-Philip, Hartmann, Michelle, Mormann, Sascha, Tauch, Andreas, Pühler, Alfred, and Kalinowski, Jörn. 2007. “The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate: sugar phosphotransferase system (PTS) in Corynebacterium glutamicum”. BMC Molecular Biology 8 (1): 104.
Gaigalat, L., Schlüter, J. - P., Hartmann, M., Mormann, S., Tauch, A., Pühler, A., and Kalinowski, J. (2007). The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate: sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. BMC Molecular Biology 8:104.
Gaigalat, L., et al., 2007. The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate: sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. BMC Molecular Biology, 8(1): 104.
L. Gaigalat, et al., “The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate: sugar phosphotransferase system (PTS) in Corynebacterium glutamicum”, BMC Molecular Biology, vol. 8, 2007, : 104.
Gaigalat, L., Schlüter, J.-P., Hartmann, M., Mormann, S., Tauch, A., Pühler, A., Kalinowski, J.: The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate: sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. BMC Molecular Biology. 8, : 104 (2007).
Gaigalat, Lars, Schlüter, Jan-Philip, Hartmann, Michelle, Mormann, Sascha, Tauch, Andreas, Pühler, Alfred, and Kalinowski, Jörn. “The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate: sugar phosphotransferase system (PTS) in Corynebacterium glutamicum”. BMC Molecular Biology 8.1 (2007): 104.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:52Z
MD5 Prüfsumme
d473854b7ec91de0560e86c93c2e067e


50 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The RamA regulon: complex regulatory interactions in relation to central metabolism in Corynebacterium glutamicum.
Shah A, Blombach B, Gauttam R, Eikmanns BJ., Appl Microbiol Biotechnol 102(14), 2018
PMID: 29804137
GlpR Is a Direct Transcriptional Repressor of Fructose Metabolic Genes in Haloferax volcanii.
Martin JH, Sherwood Rawls K, Chan JC, Hwang S, Martinez-Pastor M, McMillan LJ, Prunetti L, Schmid AK, Maupin-Furlow JA., J Bacteriol 200(17), 2018
PMID: 29914986
Isolation and Transcriptome Analysis of Phenol-Degrading Bacterium From Carbon-Sand Filters in a Full-Scale Drinking Water Treatment Plant.
Gu Q, Wu Q, Zhang J, Guo W, Ding Y, Wang J, Wu H, Sun M, Hou L, Wei X, Zhang Y., Front Microbiol 9(), 2018
PMID: 30298058
Improved production of propionic acid using genome shuffling.
Luna-Flores CH, Palfreyman RW, Krömer JO, Nielsen LK, Marcellin E., Biotechnol J 12(2), 2017
PMID: 27676587
Regulons of global transcription factors in Corynebacterium glutamicum.
Toyoda K, Inui M., Appl Microbiol Biotechnol 100(1), 2016
PMID: 26496920
Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.
Pérez-García F, Peters-Wendisch P, Wendisch VF., Appl Microbiol Biotechnol 100(18), 2016
PMID: 27345060
Proteomic responses to gold(iii)-toxicity in the bacterium Cupriavidus metallidurans CH34.
Zammit CM, Weiland F, Brugger J, Wade B, Winderbaum LJ, Nies DH, Southam G, Hoffmann P, Reith F., Metallomics 8(11), 2016
PMID: 27757465
A novel pyruvate kinase and its application in lactic acid production under oxygen deprivation in Corynebacterium glutamicum.
Chai X, Shang X, Zhang Y, Liu S, Liang Y, Zhang Y, Wen T., BMC Biotechnol 16(1), 2016
PMID: 27852252
Regulation of Streptococcus mutans PTS Bio by the transcriptional repressor NigR.
Vujanac M, Iyer VS, Sengupta M, Ajdic D., Mol Oral Microbiol 30(4), 2015
PMID: 25580872
The multihued palette of dye-decolorizing peroxidases.
Singh R, Eltis LD., Arch Biochem Biophys 574(), 2015
PMID: 25743546
Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Krämer R, Wendisch VF, Seibold GM., Appl Microbiol Biotechnol 98(12), 2014
PMID: 24668244
Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains.
Lindner SN, Petrov DP, Hagmann CT, Henrich A, Krämer R, Eikmanns BJ, Wendisch VF, Seibold GM., Appl Environ Microbiol 79(8), 2013
PMID: 23396334
Maltose uptake by the novel ABC transport system MusEFGK2I causes increased expression of ptsG in Corynebacterium glutamicum.
Henrich A, Kuhlmann N, Eck AW, Krämer R, Seibold GM., J Bacteriol 195(11), 2013
PMID: 23543710
Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032.
Mentz A, Neshat A, Pfeifer-Sancar K, Pühler A, Rückert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24138339
Glycerol utilization by Rhizobium leguminosarum requires an ABC transporter and affects competition for nodulation.
Ding H, Yip CB, Geddes BA, Oresnik IJ, Hynes MF., Microbiology 158(pt 5), 2012
PMID: 22343359
Fermentative production of branched chain amino acids: a focus on metabolic engineering.
Park JH, Lee SY., Appl Microbiol Biotechnol 85(3), 2010
PMID: 19844702
Studies on substrate utilisation in L-valine-producing Corynebacterium glutamicum strains deficient in pyruvate dehydrogenase complex.
Bartek T, Rudolf C, Kerssen U, Klein B, Blombach B, Lang S, Eikmanns BJ, Oldiges M., Bioprocess Biosyst Eng 33(7), 2010
PMID: 20204663
Link between phosphate starvation and glycogen metabolism in Corynebacterium glutamicum, revealed by metabolomics.
Woo HM, Noack S, Seibold GM, Willbold S, Eikmanns BJ, Bott M., Appl Environ Microbiol 76(20), 2010
PMID: 20802079
Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production.
Krause FS, Blombach B, Eikmanns BJ., Appl Environ Microbiol 76(24), 2010
PMID: 20935122
Regulation of ldh expression during biotin-limited growth of Corynebacterium glutamicum.
Dietrich C, Nato A, Bost B, Le Maréchal P, Guyonvarch A., Microbiology 155(pt 4), 2009
PMID: 19332837
Visualizing post genomics data-sets on customized pathway maps by ProMeTra-aeration-dependent gene expression and metabolism of Corynebacterium glutamicum as an example.
Neuweger H, Persicke M, Albaum SP, Bekel T, Dondrup M, Hüser AT, Winnebald J, Schneider J, Kalinowski J, Goesmann A., BMC Syst Biol 3(), 2009
PMID: 19698148
Structural and functional characterization of the LldR from Corynebacterium glutamicum: a transcriptional repressor involved in L-lactate and sugar utilization.
Gao YG, Suzuki H, Itou H, Zhou Y, Tanaka Y, Wachi M, Watanabe N, Tanaka I, Yao M., Nucleic Acids Res 36(22), 2008
PMID: 18988622

59 References

Daten bereitgestellt von Europe PubMed Central.

Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria.
Postma PW, Lengeler JW, Jacobson GR., Microbiol. Rev. 57(3), 1993
PMID: 8246840
How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria.
Deutscher J, Francke C, Postma PW., Microbiol. Mol. Biol. Rev. 70(4), 2006
PMID: 17158705
Industrial production of amino acids by coryneform bacteria.
Hermann T., J. Biotechnol. 104(1-3), 2003
PMID: 12948636
Phosphotransferase-dependent glucose transport in
Malin GM, Bourd GI., 1991
Complete Sucrose Metabolism Requires Fructose Phosphotransferase Activity in . To Ensure Phosphorylation of Liberated Fructose
Dominguez H, Lindley ND., 1996
Corynebacterium glutamicum: a dissection of the PTS.
Parche S, Burkovski A, Sprenger GA, Weil B, Kramer R, Titgemeyer F., J. Mol. Microbiol. Biotechnol. 3(3), 2001
PMID: 11361073
Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032.
Moon MW, Kim HJ, Oh TK, Shin CS, Lee JS, Kim SJ, Lee JK., FEMS Microbiol. Lett. 244(2), 2005
PMID: 15766777
Global control of sugar metabolism: a gram-positive solution.
Titgemeyer F, Hillen W., Antonie Van Leeuwenhoek 82(1-4), 2002
PMID: 12369205
Phosphenolpyruvate: Sugar phosphotransferase systems and sugar metabolism in
Mori M, Shiio I., 1987
Effect of the FruR regulator on transcription of the pts operon in Escherichia coli.
Ryu S, Ramseier TM, Michotey V, Saier MH Jr, Garges S., J. Biol. Chem. 270(6), 1995
PMID: 7852310
Fructose utilization in Lactococcus lactis as a model for low-GC gram-positive bacteria: its regulator, signal, and DNA-binding site.
Barriere C, Veiga-da-Cunha M, Pons N, Guedon E, van Hijum SA, Kok J, Kuipers OP, Ehrlich DS, Renault P., J. Bacteriol. 187(11), 2005
PMID: 15901699
Fructose operon mutants of Spiroplasma citri.
Gaurivaud P, Laigret F, Verdin E, Garnier M, Bove JM., Microbiology (Reading, Engl.) 146 ( Pt 9)(), 2000
PMID: 10974110
Involvement of an inducible fructose phosphotransferase operon in Streptococcus gordonii biofilm formation.
Loo CY, Mitrakul K, Voss IB, Hughes CV, Ganeshkumar N., J. Bacteriol. 185(21), 2003
PMID: 14563858
Corynebacterium diphtheriae: a PTS view to the genome.
Parche S, Thomae AW, Schlicht M, Titgemeyer F., J. Mol. Microbiol. Biotechnol. 3(3), 2001
PMID: 11361072
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose.
Dominguez H, Rollin C, Guyonvarch A, Guerquin-Kern JL, Cocaign-Bousquet M, Lindley ND., Eur. J. Biochem. 254(1), 1998
PMID: 9652400
In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome.
Kromer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C., J. Bacteriol. 186(6), 2004
PMID: 14996808
The phosphotransferase system of Corynebacterium glutamicum: features of sugar transport and carbon regulation.
Moon MW, Park SY, Choi SK, Lee JK., J. Mol. Microbiol. Biotechnol. 12(1-2), 2007
PMID: 17183210
Differential signal transduction via TrmB, a sugar sensing transcriptional repressor of Pyrococcus furiosus.
Lee SJ, Surma M, Seitz S, Hausner W, Thomm M, Boos W., Mol. Microbiol. 64(6), 2007
PMID: 17504272
A novel method for accurate operon predictions in all sequenced prokaryotes.
Price MN, Huang KH, Alm EJ, Arkin AP., Nucleic Acids Res. 33(3), 2005
PMID: 15701760
Prediction of transcription terminators in bacterial genomes.
Ermolaeva MD, Khalak HG, White O, Smith HO, Salzberg SL., J. Mol. Biol. 301(1), 2000
PMID: 10926490
Promoters of Corynebacterium glutamicum.
Patek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G., J. Biotechnol. 104(1-3), 2003
PMID: 12948648
The IclR-type transcriptional repressor LtbR regulates the expression of leucine and tryptophan biosynthesis genes in the amino acid producer Corynebacterium glutamicum.
Brune I, Jochmann N, Brinkrolf K, Huser AT, Gerstmeir R, Eikmanns BJ, Kalinowski J, Puhler A, Tauch A., J. Bacteriol. 189(7), 2007
PMID: 17259312
Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step.
Chong S, Montello GE, Zhang A, Cantor EJ, Liao W, Xu MQ, Benner J., Nucleic Acids Res. 26(22), 1998
PMID: 9801307
Repression and catabolite repression of the lactose operon of Staphylococcus aureus.
Oskouian B, Stewart GC., J. Bacteriol. 172(7), 1990
PMID: 2163387
Genetics of L-sorbose transport and metabolism in Lactobacillus casei.
Yebra MJ, Veyrat A, Santos MA, Perez-Martinez G., J. Bacteriol. 182(1), 2000
PMID: 10613875
Regulation of expression of the 2-deoxy-D-ribose utilization regulon, deoQKPX, from Salmonella enterica serovar typhimurium.
Christensen M, Borza T, Dandanell G, Gilles AM, Barzu O, Kelln RA, Neuhard J., J. Bacteriol. 185(20), 2003
PMID: 14526015
DeoT, a DeoR-type transcriptional regulator of multiple target genes.
Elgrably-Weiss M, Schlosser-Silverman E, Rosenshine I, Altuvia S., FEMS Microbiol. Lett. 254(1), 2006
PMID: 16451192
Purification and characterization of the DeoR repressor of Bacillus subtilis.
Zeng X, Saxild HH, Switzer RL., J. Bacteriol. 182(7), 2000
PMID: 10714997
Long-range cooperativity between gene regulatory sequences in a prokaryote.
Dandanell G, Valentin-Hansen P, Larsen JE, Hammer K., Nature 325(6107), 1987
PMID: 3547140
The catabolite repressor/activator (Cra) protein of enteric bacteria.
Saier MH Jr, Ramseier TM., J. Bacteriol. 178(12), 1996
PMID: 8655535
Acetate metabolism and its regulation in Corynebacterium glutamicum.
Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ., J. Biotechnol. 104(1-3), 2003
PMID: 12948633
RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum.
Gerstmeir R, Cramer A, Dangel P, Schaffer S, Eikmanns BJ., J. Bacteriol. 186(9), 2004
PMID: 15090522

Sambrook J, Fritsch EF, Maniatis T., 1989

Suggs SV, Hirose T, Miyake T, Kawashima EH, Johnson MJ, Itakura K, Wallace RB., 1981
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668
Electrotransformation of and : growth in Tween 80 increases transformation frequencies
Haynes JA, Britz ML., 1989
Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases.
Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C., Proc. Natl. Acad. Sci. U.S.A. 90(11), 1993
PMID: 8506346
Probability-based protein identification by searching sequence databases using mass spectrometry data.
Perkins DN, Pappin DJ, Creasy DM, Cottrell JS., Electrophoresis 20(18), 1999
PMID: 10612281
Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source.
Huser AT, Becker A, Brune I, Dondrup M, Kalinowski J, Plassmeier J, Puhler A, Wiegrabe I, Tauch A., J. Biotechnol. 106(2-3), 2003
PMID: 14651867
EMMA: a platform for consistent storage and efficient analysis of microarray data.
Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Puhler A, Meyer F., J. Biotechnol. 106(2-3), 2003
PMID: 14651856
GenDB--an open source genome annotation system for prokaryote genomes.
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A., Nucleic Acids Res. 31(8), 2003
PMID: 12682369
The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG., Nucleic Acids Res. 25(24), 1997
PMID: 9396791
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18005413
PubMed | Europe PMC

Suchen in

Google Scholar