Behaviour-based modelling of hexapod locomotion: Linking biology and technical application

Dürr V, Schmitz J, Cruse H (2004)
Arthropod.Struct.Dev. 33(3): 237-250.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
Abstract / Bemerkung
Walking in insects and most six-legged robots requires simultaneous control of up to 18 joints. Moreover the number of joints that are mechanically coupled via body and ground varies from one moment to the next, and external conditions such as friction, compliance and slope of the substrate are often unpredictable. Thus, walking behaviour requires adaptive, context-dependent control of many degrees of freedom. As a consequence, modelling legged locomotion addresses many aspects of any motor behaviour in general. Based on results from behavioural experiments on arthropods, we describe a kinematic model of hexapod walking: the distributed artificial neural network controller WALKNET. Conceptually, the model addresses three basic problems of legged locomotion. (I) First, coordination of several legs requires coupling between the step cycles of adjacent legs, optimising synergistic propulsion, but ensuring stability through flexible adjustment to external disturbances. A set of behaviourally derived leg coordination rules can account for decentralised generation of different gaits, and allows stable walking of the insect model as well as of a number of legged robots. (II) Second, a wide range of different leg movements must be possible, e.g. to search for foothold, grasp for objects or groom the body surface. We present a simple neural network controller that can simulate targeted swing trajectories, obstacle avoidance reflexes and cyclic searching-movements. (III) Third, control of mechanically coupled joints of the legs in stance is achieved by exploiting the physical interactions between body, legs and substrate. A local positive displacement feedback, acting on individual leg joints, transforms passive displacement of a joint into active movement, generating synergistic assistance reflexes in all mechanically coupled joints.
Stichworte
Neural network; Artificial Neural Network; MOTOR; model; Controller; Hexapod; Modelling; Behaviour; REFLEXES; leg; context-dependent; Avoidance reflex; Reflex; Searching movements; Assistance reflex; slope; body; compliance; Obstacle avoidance; walknet; coordination; legs; stability; Leg coordination; Gait; Leg movement; MOVEMENTS; JOINT; control; robot; insect; Walking; Locomotion; Arthropod; movement
Erscheinungsjahr
2004
Zeitschriftentitel
Arthropod.Struct.Dev.
Band
33
Ausgabe
3
Seite(n)
237-250
ISSN
1467-8039
Page URI
https://pub.uni-bielefeld.de/record/1681355

Zitieren

Dürr V, Schmitz J, Cruse H. Behaviour-based modelling of hexapod locomotion: Linking biology and technical application. Arthropod.Struct.Dev. 2004;33(3):237-250.
Dürr, V., Schmitz, J., & Cruse, H. (2004). Behaviour-based modelling of hexapod locomotion: Linking biology and technical application. Arthropod.Struct.Dev., 33(3), 237-250. doi:10.1016/j.asd.2004.05.004
Dürr, V., Schmitz, J., and Cruse, H. (2004). Behaviour-based modelling of hexapod locomotion: Linking biology and technical application. Arthropod.Struct.Dev. 33, 237-250.
Dürr, V., Schmitz, J., & Cruse, H., 2004. Behaviour-based modelling of hexapod locomotion: Linking biology and technical application. Arthropod.Struct.Dev., 33(3), p 237-250.
V. Dürr, J. Schmitz, and H. Cruse, “Behaviour-based modelling of hexapod locomotion: Linking biology and technical application”, Arthropod.Struct.Dev., vol. 33, 2004, pp. 237-250.
Dürr, V., Schmitz, J., Cruse, H.: Behaviour-based modelling of hexapod locomotion: Linking biology and technical application. Arthropod.Struct.Dev. 33, 237-250 (2004).
Dürr, Volker, Schmitz, Josef, and Cruse, Holk. “Behaviour-based modelling of hexapod locomotion: Linking biology and technical application”. Arthropod.Struct.Dev. 33.3 (2004): 237-250.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 18089037
PubMed | Europe PMC

Suchen in

Google Scholar