Behaviour-based modelling of hexapod locomotion: Linking biology and technical application
Dürr V, Schmitz J, Cruse H (2004)
Arthropod.Struct.Dev. 33(3): 237-250.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
Walking in insects and most six-legged robots requires simultaneous control of up to 18 joints. Moreover the number of joints that are mechanically coupled via body and ground varies from one moment to the next, and external conditions such as friction, compliance and slope of the substrate are often unpredictable. Thus, walking behaviour requires adaptive, context-dependent control of many degrees of freedom. As a consequence, modelling legged locomotion addresses many aspects of any motor behaviour in general. Based on results from behavioural experiments on arthropods, we describe a kinematic model of hexapod walking: the distributed artificial neural network controller WALKNET. Conceptually, the model addresses three basic problems of legged locomotion. (I) First, coordination of several legs requires coupling between the step cycles of adjacent legs, optimising synergistic propulsion, but ensuring stability through flexible adjustment to external disturbances. A set of behaviourally derived leg coordination rules can account for decentralised generation of different gaits, and allows stable walking of the insect model as well as of a number of legged robots. (II) Second, a wide range of different leg movements must be possible, e.g. to search for foothold, grasp for objects or groom the body surface. We present a simple neural network controller that can simulate targeted swing trajectories, obstacle avoidance reflexes and cyclic searching-movements. (III) Third, control of mechanically coupled joints of the legs in stance is achieved by exploiting the physical interactions between body, legs and substrate. A local positive displacement feedback, acting on individual leg joints, transforms passive displacement of a joint into active movement, generating synergistic assistance reflexes in all mechanically coupled joints.
Stichworte
Neural network;
Artificial Neural Network;
MOTOR;
model;
Controller;
Hexapod;
Modelling;
Behaviour;
REFLEXES;
leg;
context-dependent;
Avoidance reflex;
Reflex;
Searching movements;
Assistance reflex;
slope;
body;
compliance;
Obstacle avoidance;
walknet;
coordination;
legs;
stability;
Leg coordination;
Gait;
Leg movement;
MOVEMENTS;
JOINT;
control;
robot;
insect;
Walking;
Locomotion;
Arthropod;
movement
Erscheinungsjahr
2004
Zeitschriftentitel
Arthropod.Struct.Dev.
Band
33
Ausgabe
3
Seite(n)
237-250
ISSN
1467-8039
Page URI
https://pub.uni-bielefeld.de/record/1681355
Zitieren
Dürr V, Schmitz J, Cruse H. Behaviour-based modelling of hexapod locomotion: Linking biology and technical application. Arthropod.Struct.Dev. 2004;33(3):237-250.
Dürr, V., Schmitz, J., & Cruse, H. (2004). Behaviour-based modelling of hexapod locomotion: Linking biology and technical application. Arthropod.Struct.Dev., 33(3), 237-250. https://doi.org/10.1016/j.asd.2004.05.004
Dürr, Volker, Schmitz, Josef, and Cruse, Holk. 2004. “Behaviour-based modelling of hexapod locomotion: Linking biology and technical application”. Arthropod.Struct.Dev. 33 (3): 237-250.
Dürr, V., Schmitz, J., and Cruse, H. (2004). Behaviour-based modelling of hexapod locomotion: Linking biology and technical application. Arthropod.Struct.Dev. 33, 237-250.
Dürr, V., Schmitz, J., & Cruse, H., 2004. Behaviour-based modelling of hexapod locomotion: Linking biology and technical application. Arthropod.Struct.Dev., 33(3), p 237-250.
V. Dürr, J. Schmitz, and H. Cruse, “Behaviour-based modelling of hexapod locomotion: Linking biology and technical application”, Arthropod.Struct.Dev., vol. 33, 2004, pp. 237-250.
Dürr, V., Schmitz, J., Cruse, H.: Behaviour-based modelling of hexapod locomotion: Linking biology and technical application. Arthropod.Struct.Dev. 33, 237-250 (2004).
Dürr, Volker, Schmitz, Josef, and Cruse, Holk. “Behaviour-based modelling of hexapod locomotion: Linking biology and technical application”. Arthropod.Struct.Dev. 33.3 (2004): 237-250.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
14 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems.
Schilling M, Cruse H., Front Neurorobot 11(), 2017
PMID: 28194106
Schilling M, Cruse H., Front Neurorobot 11(), 2017
PMID: 28194106
Effects of functional decoupling of a leg in a model of stick insect walking incorporating three ipsilateral legs.
Tóth TI, Daun S., Physiol Rep 5(4), 2017
PMID: 28242829
Tóth TI, Daun S., Physiol Rep 5(4), 2017
PMID: 28242829
A load-based mechanism for inter-leg coordination in insects.
Dallmann CJ, Hoinville T, Dürr V, Schmitz J., Proc Biol Sci 284(1868), 2017
PMID: 29187626
Dallmann CJ, Hoinville T, Dürr V, Schmitz J., Proc Biol Sci 284(1868), 2017
PMID: 29187626
Intersegmental coupling and recovery from perturbations in freely running cockroaches.
Couzin-Fuchs E, Kiemel T, Gal O, Ayali A, Holmes P., J Exp Biol 218(pt 2), 2015
PMID: 25609786
Couzin-Fuchs E, Kiemel T, Gal O, Ayali A, Holmes P., J Exp Biol 218(pt 2), 2015
PMID: 25609786
Kinematic responses to changes in walking orientation and gravitational load in Drosophila melanogaster.
Mendes CS, Rajendren SV, Bartos I, Márka S, Mann RS., PLoS One 9(10), 2014
PMID: 25350743
Mendes CS, Rajendren SV, Bartos I, Márka S, Mann RS., PLoS One 9(10), 2014
PMID: 25350743
Force encoding in stick insect legs delineates a reference frame for motor control.
Zill SN, Schmitz J, Chaudhry S, Büschges A., J Neurophysiol 108(5), 2012
PMID: 22673329
Zill SN, Schmitz J, Chaudhry S, Büschges A., J Neurophysiol 108(5), 2012
PMID: 22673329
What's Next: Recruitment of a Grounded Predictive Body Model for Planning a Robot's Actions.
Schilling M, Cruse H., Front Psychol 3(), 2012
PMID: 23060845
Schilling M, Cruse H., Front Psychol 3(), 2012
PMID: 23060845
Intersegmental coordination of cockroach locomotion: adaptive control of centrally coupled pattern generator circuits.
Fuchs E, Holmes P, Kiemel T, Ayali A., Front Neural Circuits 4(), 2011
PMID: 21369365
Fuchs E, Holmes P, Kiemel T, Ayali A., Front Neural Circuits 4(), 2011
PMID: 21369365
Tight turns in stick insects.
Cruse H, Ehmanns I, Stübner S, Schmitz J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195(3), 2009
PMID: 19137316
Cruse H, Ehmanns I, Stübner S, Schmitz J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195(3), 2009
PMID: 19137316
Regulation of motor pattern frequency by reversals in proprioceptive feedback.
Smarandache CR, Daur N, Hedrich UB, Stein W., Eur J Neurosci 28(3), 2008
PMID: 18702718
Smarandache CR, Daur N, Hedrich UB, Stein W., Eur J Neurosci 28(3), 2008
PMID: 18702718
Hexapod Walking: an expansion to Walknet dealing with leg amputations and force oscillations.
Schilling M, Cruse H, Arena P., Biol Cybern 96(3), 2007
PMID: 17106698
Schilling M, Cruse H, Arena P., Biol Cybern 96(3), 2007
PMID: 17106698
Common motor mechanisms support body load in serially homologous legs of cockroaches in posture and walking.
Quimby LA, Amer AS, Zill SN., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192(3), 2006
PMID: 16362305
Quimby LA, Amer AS, Zill SN., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192(3), 2006
PMID: 16362305
Intersegmental transfer of sensory signals in the stick insect leg muscle control system.
Stein W, Büschges A, Bässler U., J Neurobiol 66(11), 2006
PMID: 16902990
Stein W, Büschges A, Bässler U., J Neurobiol 66(11), 2006
PMID: 16902990
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 18089037
PubMed | Europe PMC
Suchen in