Tight turns in stick insects

Cruse H, Ehmanns I, Stübner S, Schmitz J (2009)
Journal of Comparative Physiology A 195(3): 299-309.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Cruse, HolkUniBi; Ehmanns, Ingo; Stübner, Sebastian; Schmitz, JosefUniBi
Abstract / Bemerkung
We investigated insects Carausius morosus walking whilst hanging upside down along a narrow 3 mm horizontal beam. At the end of the beam, the animal takes a 180 degrees turn. This is a difficult situation because substrate area is small and moves relative to the body during the turn. We investigated how leg movements are organised during this turn. A non-contact of either front leg appears to indicate the end of the beam. However, a turn can only begin if the hind legs stand in an appropriate position relative to each other; the outer hind leg must not be placed posterior to the inner hind leg. When starting the turn, both front legs are lifted and usually held in a relatively stable position and then the inner middle leg performs a swing-and-search movement: The leg begins a swing, which is continued by a searching movement to the side and to the rear, and eventually grasps the beam. At the same time the body is turned usually being supported by the outer middle leg and both hind legs. Then front legs followed by the outer middle leg reach the beam. A scheme describing the turns based on a few simple behavioural elements is proposed.
Stichworte
life; MOVEMENTS; Middle Leg; body; leg; movement; insect; Animal; Carausius; POSITION; legs; small; Stick Insect; TIME; turning; Leg movement; Walking; hind leg; Front Leg; Curve walking
Erscheinungsjahr
2009
Zeitschriftentitel
Journal of Comparative Physiology A
Band
195
Ausgabe
3
Seite(n)
299-309
ISSN
0340-7594
eISSN
1432-1351
Page URI
https://pub.uni-bielefeld.de/record/1681295

Zitieren

Cruse H, Ehmanns I, Stübner S, Schmitz J. Tight turns in stick insects. Journal of Comparative Physiology A. 2009;195(3):299-309.
Cruse, H., Ehmanns, I., Stübner, S., & Schmitz, J. (2009). Tight turns in stick insects. Journal of Comparative Physiology A, 195(3), 299-309. https://doi.org/10.1007/s00359-008-0406-3
Cruse, Holk, Ehmanns, Ingo, Stübner, Sebastian, and Schmitz, Josef. 2009. “Tight turns in stick insects”. Journal of Comparative Physiology A 195 (3): 299-309.
Cruse, H., Ehmanns, I., Stübner, S., and Schmitz, J. (2009). Tight turns in stick insects. Journal of Comparative Physiology A 195, 299-309.
Cruse, H., et al., 2009. Tight turns in stick insects. Journal of Comparative Physiology A, 195(3), p 299-309.
H. Cruse, et al., “Tight turns in stick insects”, Journal of Comparative Physiology A, vol. 195, 2009, pp. 299-309.
Cruse, H., Ehmanns, I., Stübner, S., Schmitz, J.: Tight turns in stick insects. Journal of Comparative Physiology A. 195, 299-309 (2009).
Cruse, Holk, Ehmanns, Ingo, Stübner, Sebastian, and Schmitz, Josef. “Tight turns in stick insects”. Journal of Comparative Physiology A 195.3 (2009): 299-309.

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The manifold structure of limb coordination in walking Drosophila.
DeAngelis BD, Zavatone-Veth JA, Clark DA., Elife 8(), 2019
PMID: 31250807
Exceptional running and turning performance in a mite.
Rubin S, Young MH, Wright JC, Whitaker DL, Ahn AN., J Exp Biol 219(pt 5), 2016
PMID: 26787481
Body side-specific control of motor activity during turning in a walking animal.
Gruhn M, Rosenbaum P, Bockemühl T, Büschges A., Elife 5(), 2016
PMID: 27130731
A neuromechanical model for the neuronal basis of curve walking in the stick insect.
Knops S, Tóth TI, Guschlbauer C, Gruhn M, Daun-Gruhn S., J Neurophysiol 109(3), 2013
PMID: 23136343
Walknet, a bio-inspired controller for hexapod walking.
Schilling M, Hoinville T, Schmitz J, Cruse H., Biol Cybern 107(4), 2013
PMID: 23824506
A hexapod walker using a heterarchical architecture for action selection.
Schilling M, Paskarbeit J, Hoinville T, Hüffmeier A, Schneider A, Schmitz J, Cruse H., Front Comput Neurosci 7(), 2013
PMID: 24062682

45 References

Daten bereitgestellt von Europe PubMed Central.


R, Autonomous Robots 11(), 2001

U, Biol Cybern 65(), 1991

B, 2004

B, Adaptive Behav 14(3), 2006

B, J Comp Physiol A 190(), 2004
Stick insect locomotion in a complex environment: climbing over large gaps.
Blaesing B, Cruse H., J. Exp. Biol. 207(Pt 8), 2004
PMID: 15010478

H, Biol Cybern 24(), 1976

H, J Comp Physiol 112(), 1976

H, J Exp Biol 116(), 1985

H, J Insect Physiol 41(9), 1995

J, J Exp Biol 159(), 1991

F, 1981

F, Ann Rev Entomol 49(), 2004
Stick insects walking along inclined surfaces.
Diederich B, Schumm M, Cruse H., Integr. Comp. Biol. 42(1), 2002
PMID: 21708706

V, J Exp Biol 204(9), 2001

V, J Exp Biol 208(12), 2005

V, J Exp Biol 208(12), 2005
Behaviour-based modelling of hexapod locomotion: linking biology and technical application.
Durr V, Schmitz J, Cruse H., Arthropod Struct Dev 33(3), 2004
PMID: 18089037

W, J Exp Biol 209(11), 2006

R, J Insect Physiol 27(), 1981

L, J Insect Physiol 43(), 1997

L, J Zool 238(), 1996

D, Biol Cybern 32(), 1979
Straight walking and turning on a slippery surface.
Gruhn M, Zehl L, Buschges A., J. Exp. Biol. 212(Pt 2), 2009
PMID: 19112138

AUTHOR UNKNOWN, 0

DL, J Exp Biol 202(), 1999

T, Adaptive Behav 9(), 2002

TM, R Soc London 354(), 1999

KG, J Exp Biol 56(), 1972

KG, Intl J Robot Res 3(), 1984

RD, Autonomous Robots 11(3), 2001
Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots.
Ritzmann RE, Quinn RD, Fischer MS., Arthropod Struct Dev 33(3), 2004
PMID: 18089044

J, J Exp Biol 183(), 1993

J, J Exp Biol 143(), 1989

J, Appl Bionics Biomech 5(3), 2008

A, Intl J Robot Res 25(), 2006

M, J Comp Physiol A 192(), 2006

J, J Comp Physiol A 188(), 2002

V, J Comp Physiol 97(), 1975
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19137316
PubMed | Europe PMC

Suchen in

Google Scholar