Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics
Timm W, Scherbart A, Boecker S, Kohlbacher O, Nattkemper TW (2008)
BMC Bioinformatics 9(1): 443.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Timm, Wiebke;
Scherbart, Alexandra;
Boecker, Sebastian;
Kohlbacher, Oliver;
Nattkemper, Tim WilhelmUniBi
Einrichtung
Abstract / Bemerkung
Background: Mass spectrometry is a key technique in proteomics and can be used to analyze complex samples quickly. One key problem with the mass spectrometric analysis of peptides and proteins, however, is the fact that absolute quantification is severely hampered by the unclear relationship between the observed peak intensity and the peptide concentration in the sample. While there are numerous approaches to circumvent this problem experimentally (e. g. labeling techniques), reliable prediction of the peak intensities from peptide sequences could provide a peptide-specific correction factor. Thus, it would be a valuable tool towards label-free absolute quantification. Results: In this work we present machine learning techniques for peak intensity prediction for MALDI mass spectra. Features encoding the peptides' physico-chemical properties as well as string-based features were extracted. A feature subset was obtained from multiple forward feature selections on the extracted features. Based on these features, two advanced machine learning methods (support vector regression and local linear maps) are shown to yield good results for this problem (Pearson correlation of 0.68 in a ten-fold cross validation). Conclusion: The techniques presented here are a useful first step going beyond the binary prediction of proteotypic peptides towards a more quantitative prediction of peak intensities. These predictions in turn will turn out to be beneficial for mass spectrometry-based quantitative proteomics.
Erscheinungsjahr
2008
Zeitschriftentitel
BMC Bioinformatics
Band
9
Ausgabe
1
Seite(n)
443
ISSN
1471-2105
Page URI
https://pub.uni-bielefeld.de/record/1636280
Zitieren
Timm W, Scherbart A, Boecker S, Kohlbacher O, Nattkemper TW. Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics. BMC Bioinformatics. 2008;9(1):443.
Timm, W., Scherbart, A., Boecker, S., Kohlbacher, O., & Nattkemper, T. W. (2008). Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics. BMC Bioinformatics, 9(1), 443. https://doi.org/10.1186/1471-2105-9-443
Timm, Wiebke, Scherbart, Alexandra, Boecker, Sebastian, Kohlbacher, Oliver, and Nattkemper, Tim Wilhelm. 2008. “Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics”. BMC Bioinformatics 9 (1): 443.
Timm, W., Scherbart, A., Boecker, S., Kohlbacher, O., and Nattkemper, T. W. (2008). Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics. BMC Bioinformatics 9, 443.
Timm, W., et al., 2008. Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics. BMC Bioinformatics, 9(1), p 443.
W. Timm, et al., “Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics”, BMC Bioinformatics, vol. 9, 2008, pp. 443.
Timm, W., Scherbart, A., Boecker, S., Kohlbacher, O., Nattkemper, T.W.: Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics. BMC Bioinformatics. 9, 443 (2008).
Timm, Wiebke, Scherbart, Alexandra, Boecker, Sebastian, Kohlbacher, Oliver, and Nattkemper, Tim Wilhelm. “Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics”. BMC Bioinformatics 9.1 (2008): 443.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:05Z
MD5 Prüfsumme
e1ad6c0661199a92165e8f1baf5d887c
Daten bereitgestellt von European Bioinformatics Institute (EBI)
11 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
MALDIViz: A Comprehensive Informatics Tool for MALDI-MS Data Visualization and Analysis.
Jagadeesan KK, Ekström S., SLAS Discov 22(10), 2017
PMID: 28825969
Jagadeesan KK, Ekström S., SLAS Discov 22(10), 2017
PMID: 28825969
Modeling and systematic analysis of biomarker validation using selected reaction monitoring.
Atashpaz-Gargari E, Braga-Neto UM, Dougherty ER., EURASIP J Bioinform Syst Biol 2014(), 2014
PMID: 28194167
Atashpaz-Gargari E, Braga-Neto UM, Dougherty ER., EURASIP J Bioinform Syst Biol 2014(), 2014
PMID: 28194167
Tools for label-free peptide quantification.
Nahnsen S, Bielow C, Reinert K, Kohlbacher O., Mol Cell Proteomics 12(3), 2013
PMID: 23250051
Nahnsen S, Bielow C, Reinert K, Kohlbacher O., Mol Cell Proteomics 12(3), 2013
PMID: 23250051
Review of software tools for design and analysis of large scale MRM proteomic datasets.
Colangelo CM, Chung L, Bruce C, Cheung KH., Methods 61(3), 2013
PMID: 23702368
Colangelo CM, Chung L, Bruce C, Cheung KH., Methods 61(3), 2013
PMID: 23702368
Label-free quantification using MALDI mass spectrometry: considerations and perspectives.
Benk AS, Roesli C., Anal Bioanal Chem 404(4), 2012
PMID: 22358999
Benk AS, Roesli C., Anal Bioanal Chem 404(4), 2012
PMID: 22358999
A systematic model of the LC-MS proteomics pipeline.
Sun Y, Braga-Neto U, Dougherty ER., BMC Genomics 13 Suppl 6(), 2012
PMID: 23134670
Sun Y, Braga-Neto U, Dougherty ER., BMC Genomics 13 Suppl 6(), 2012
PMID: 23134670
MALDI immunoscreening (MiSCREEN): a method for selection of anti-peptide monoclonal antibodies for use in immunoproteomics.
Razavi M, Pope ME, Soste MV, Eyford BA, Jackson AM, Anderson NL, Pearson TW., J Immunol Methods 364(1-2), 2011
PMID: 21078325
Razavi M, Pope ME, Soste MV, Eyford BA, Jackson AM, Anderson NL, Pearson TW., J Immunol Methods 364(1-2), 2011
PMID: 21078325
Feature-matching pattern-based support vector machines for robust peptide mass fingerprinting.
Li Y, Hao P, Zhang S, Li Y., Mol Cell Proteomics 10(12), 2011
PMID: 21775775
Li Y, Hao P, Zhang S, Li Y., Mol Cell Proteomics 10(12), 2011
PMID: 21775775
Advances in structure elucidation of small molecules using mass spectrometry.
Kind T, Fiehn O., Bioanal Rev 2(1-4), 2010
PMID: 21289855
Kind T, Fiehn O., Bioanal Rev 2(1-4), 2010
PMID: 21289855
Image analysis tools and emerging algorithms for expression proteomics.
Dowsey AW, English JA, Lisacek F, Morris JS, Yang GZ, Dunn MJ., Proteomics 10(23), 2010
PMID: 21046614
Dowsey AW, English JA, Lisacek F, Morris JS, Yang GZ, Dunn MJ., Proteomics 10(23), 2010
PMID: 21046614
Oncoproteomic profiling with antibody microarrays.
Alhamdani MS, Schröder C, Hoheisel JD., Genome Med 1(7), 2009
PMID: 19591665
Alhamdani MS, Schröder C, Hoheisel JD., Genome Med 1(7), 2009
PMID: 19591665
45 References
Daten bereitgestellt von Europe PubMed Central.
Quantitative mass spectrometry in proteomics: a critical review.
Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B., Anal Bioanal Chem 389(4), 2007
PMID: 17668192
Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B., Anal Bioanal Chem 389(4), 2007
PMID: 17668192
Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics.
Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M., Mol. Cell Proteomics 1(5), 2002
PMID: 12118079
Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M., Mol. Cell Proteomics 1(5), 2002
PMID: 12118079
Quantitative analysis of complex protein mixtures using isotope-coded affinity tags.
Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R., Nat. Biotechnol. 17(10), 1999
PMID: 10504701
Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R., Nat. Biotechnol. 17(10), 1999
PMID: 10504701
Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents.
Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ., Mol. Cell Proteomics 3(12), 2004
PMID: 15385600
Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ., Mol. Cell Proteomics 3(12), 2004
PMID: 15385600
Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus.
Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C., Anal. Chem. 73(13), 2001
PMID: 11467524
Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C., Anal. Chem. 73(13), 2001
PMID: 11467524
Comparative LC-MS: a landscape of peaks and valleys.
America AH, Cordewener JH., Proteomics 8(4), 2008
PMID: 18297651
America AH, Cordewener JH., Proteomics 8(4), 2008
PMID: 18297651
Absolute myoglobin quantitation in serum by combining two-dimensional liquid chromatography-electrospray ionization mass spectrometry and novel data analysis algorithms.
Mayr BM, Kohlbacher O, Reinert K, Sturm M, Gropl C, Lange E, Klein C, Huber CG., J. Proteome Res. 5(2), 2006
PMID: 16457608
Mayr BM, Kohlbacher O, Reinert K, Sturm M, Gropl C, Lange E, Klein C, Huber CG., J. Proteome Res. 5(2), 2006
PMID: 16457608
Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS.
Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP., Proc. Natl. Acad. Sci. U.S.A. 100(12), 2003
PMID: 12771378
Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP., Proc. Natl. Acad. Sci. U.S.A. 100(12), 2003
PMID: 12771378
Label-free detection of differential protein expression by LC/MALDI mass spectrometry.
Neubert H, Bonnert TP, Rumpel K, Hunt BT, Henle ES, James IT., J. Proteome Res. 7(6), 2008
PMID: 18412385
Neubert H, Bonnert TP, Rumpel K, Hunt BT, Henle ES, James IT., J. Proteome Res. 7(6), 2008
PMID: 18412385
Nanoflow liquid chromatography coupled to matrix-assisted laser desorption/ionization mass spectrometry: sample preparation, data analysis, and application to the analysis of complex peptide mixtures.
Mirgorodskaya E, Braeuer C, Fucini P, Lehrach H, Gobom J., Proteomics 5(2), 2005
PMID: 15648048
Mirgorodskaya E, Braeuer C, Fucini P, Lehrach H, Gobom J., Proteomics 5(2), 2005
PMID: 15648048
Quantitative proteome analysis using differential stable isotopic labeling and microbore LC-MALDI MS and MS/MS.
Ji C, Li L., J. Proteome Res. 4(3), 2005
PMID: 15952720
Ji C, Li L., J. Proteome Res. 4(3), 2005
PMID: 15952720
Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation.
Lu P, Vogel C, Wang R, Yao X, Marcotte EM., Nat. Biotechnol. 25(1), 2006
PMID: 17187058
Lu P, Vogel C, Wang R, Yao X, Marcotte EM., Nat. Biotechnol. 25(1), 2006
PMID: 17187058
A computational approach toward label-free protein quantification using predicted peptide detectability.
Tang H, Arnold RJ, Alves P, Xun Z, Clemmer DE, Novotny MV, Reilly JP, Radivojac P., Bioinformatics 22(14), 2006
PMID: 16873510
Tang H, Arnold RJ, Alves P, Xun Z, Clemmer DE, Novotny MV, Reilly JP, Radivojac P., Bioinformatics 22(14), 2006
PMID: 16873510
Computational prediction of proteotypic peptides for quantitative proteomics.
Mallick P, Schirle M, Chen SS, Flory MR, Lee H, Martin D, Ranish J, Raught B, Schmitt R, Werner T, Kuster B, Aebersold R., Nat. Biotechnol. 25(1), 2006
PMID: 17195840
Mallick P, Schirle M, Chen SS, Flory MR, Lee H, Martin D, Ranish J, Raught B, Schmitt R, Werner T, Kuster B, Aebersold R., Nat. Biotechnol. 25(1), 2006
PMID: 17195840
Peptide mass fingerprinting peak intensity prediction: extracting knowledge from spectra.
Gay S, Binz PA, Hochstrasser DF, Appel RD., Proteomics 2(10), 2002
PMID: 12422355
Gay S, Binz PA, Hochstrasser DF, Appel RD., Proteomics 2(10), 2002
PMID: 12422355
The cytosolic, cell surface and extracellular proteomes of the biotechnologically important soil bacterium Corynebacterium efficiens YS-314 in comparison to those of Corynebacterium glutamicum ATCC 13032.
Hansmeier N, Chao TC, Puhler A, Tauch A, Kalinowski J., Proteomics 6(1), 2006
PMID: 16302278
Hansmeier N, Chao TC, Puhler A, Tauch A, Kalinowski J., Proteomics 6(1), 2006
PMID: 16302278
Rapid identification of proteins by peptide-mass fingerprinting.
Pappin DJ, Hojrup P, Bleasby AJ., Curr. Biol. 3(6), 1993
PMID: 15335725
Pappin DJ, Hojrup P, Bleasby AJ., Curr. Biol. 3(6), 1993
PMID: 15335725
Smoothing and Differentiation of Data by Simplified Least Squares Procedures
Savitzky A, Golay JEM., 1964
Savitzky A, Golay JEM., 1964
Informatics platform for global proteomic profiling and biomarker discovery using liquid chromatography-tandem mass spectrometry.
Radulovic D, Jelveh S, Ryu S, Hamilton TG, Foss E, Mao Y, Emili A., Mol. Cell Proteomics 3(10), 2004
PMID: 15269249
Radulovic D, Jelveh S, Ryu S, Hamilton TG, Foss E, Mao Y, Emili A., Mol. Cell Proteomics 3(10), 2004
PMID: 15269249
Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry.
Listgarten J, Emili A., Mol. Cell Proteomics 4(4), 2005
PMID: 15741312
Listgarten J, Emili A., Mol. Cell Proteomics 4(4), 2005
PMID: 15741312
Quantifying reproducibility for differential proteomics: noise analysis for protein liquid chromatography-mass spectrometry of human serum.
Anderle M, Roy S, Lin H, Becker C, Joho K., Bioinformatics 20(18), 2004
PMID: 15284095
Anderle M, Roy S, Lin H, Becker C, Joho K., Bioinformatics 20(18), 2004
PMID: 15284095
Quantitation of SR 27417 in Human Plasma Using Electrospray Liquid Chromatography-Tandem Mass Spectrometry: A Study of Ion Suppression
Buhrman D, Price P, Rudewicz P., 1996
Buhrman D, Price P, Rudewicz P., 1996
Shrinking the Tube: A New Support Vector Regression Algorithm
Schölkopf B, Bartlett P, Smola A, Williamson R., 1999
Schölkopf B, Bartlett P, Smola A, Williamson R., 1999
A Tutorial on Support Vector Machines for Pattern Recognition
Burges CJ., 1998
Burges CJ., 1998
Learning with the Self-Organizing Map
Ritter H., 1991
Ritter H., 1991
Chambers JM, Hastie TJ., 1992
Vapnik VN., 1995
AUTHOR UNKNOWN, 2006
Dimitriadou E, Hornik K, Leisch F, Meyer D, Weingessel A., 2006
Self-Organized Formation of Topologically Correct Feature Maps
Kohonen T., 1982
Kohonen T., 1982
SOM-based Peptide Prototyping for Mass Spectrometry Peak Intensity Prediction
Scherbart A, Timm W, Böcker S, Nattkemper TW., 2007
Scherbart A, Timm W, Böcker S, Nattkemper TW., 2007
Locally-Weighted Regression: An Approach to Regression Analysis by Local Fitting
Cleveland WS, Devlin SJ., 1988
Cleveland WS, Devlin SJ., 1988
Associative Reinforcement Learning for Optimal Control
Millington PJ, Baker WL., 1990
Millington PJ, Baker WL., 1990
Local regression: Automatic kernel carpentry
Hastie T, Loader C., 1993
Hastie T, Loader C., 1993
AAindex: Amino Acid Index Database.
Kawashima S, Ogata H, Kanehisa M., Nucleic Acids Res. 27(1), 1999
PMID: 9847231
Kawashima S, Ogata H, Kanehisa M., Nucleic Acids Res. 27(1), 1999
PMID: 9847231
Prediction of low-energy collision-induced dissociation spectra of peptides.
Zhang Z., Anal. Chem. 76(14), 2004
PMID: 15253624
Zhang Z., Anal. Chem. 76(14), 2004
PMID: 15253624
Hastie T, Tibshirani R, Friedman J., 2001
Computed Conformational States of the 20 Naturally Occuring Amino Acid Residues and of the Prototype Residue -Aminobutyric Acid
Vásquez M, Némethy G, Scheraga HA., 2001
Vásquez M, Némethy G, Scheraga HA., 2001
Prediction of protein surface accessibility with information theory.
Naderi-Manesh H, Sadeghi M, Arab S, Moosavi Movahedi AA., Proteins 42(4), 2001
PMID: 11170200
Naderi-Manesh H, Sadeghi M, Arab S, Moosavi Movahedi AA., Proteins 42(4), 2001
PMID: 11170200
Physicochemical Basis of Amino Acid Hydrophobicity Scales: Evaluation of Four New Scales of Amino Acid Hydrophobicity Coefficients Derived from RP-HPLC of Peptides
Wilce MCJ, Aguilar MI, Hearn MTW., 1995
Wilce MCJ, Aguilar MI, Hearn MTW., 1995
Amino acid side chain parameters for correlation studies in biology and pharmacology.
Fauchere JL, Charton M, Kier LB, Verloop A, Pliska V., Int. J. Pept. Protein Res. 32(4), 1988
PMID: 3209351
Fauchere JL, Charton M, Kier LB, Verloop A, Pliska V., Int. J. Pept. Protein Res. 32(4), 1988
PMID: 3209351
Random Forests
Breiman L., 2001
Breiman L., 2001
Breiman L., 2002
The Kerr Effect of Amino Acids in Water
Khanarian G, Moore WJ., 1980
Khanarian G, Moore WJ., 1980
GenDB--an open source genome annotation system for prokaryote genomes.
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A., Nucleic Acids Res. 31(8), 2003
PMID: 12682369
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A., Nucleic Acids Res. 31(8), 2003
PMID: 12682369
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 18937839
PubMed | Europe PMC
Suchen in