Characterization of the Lacl-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032

Nentwich SS, Brinkrolf K, Gaigalat L, Hueser AT, Rey DA, Mohrbach T, Marin K, Pühler A, Tauch A, Kalinowski J (2009)
MICROBIOLOGY 155(1): 150-164.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Nentwich, Svenja S.; Brinkrolf, KarinaUniBi; Gaigalat, Lars; Hueser, Andrea T.; Rey, Daniel A.; Mohrbach, Tobias; Marin, Kay; Pühler, AlfredUniBi ; Tauch, AndreasUniBi; Kalinowski, JörnUniBi
Abstract / Bemerkung
The gene products of the rbsRACBD(rbs) operon of C. glutamicum (cg1410-cg1414) encode a ribose-specific ATP-binding cassette (ABC) transport system and its corresponding regulatory protein (RbsR). Deletion of the structural genes rbsACBD prohibited ribose uptake. Deletion of the regulatory gene rbsR resulted in an increased mRNA level of the whole operon. Analysis of the promoter region of the rbs operon by electrophoretic mobility shift assays identified a catabolite-responsive element (cre)-like sequence as the RbsR-binding site. Additional RbsR-binding sites were identified in front of the recently characterized uriR operon (uriR-rbsK1-uriT-uriH) and the ribokinase gene rbsK2, In vitro, the repressor RbsR bound to its targets in the absence of an effector. A probable negative effector of RbsR in vivo is ribose 5-phosphate or a derivative thereof, since in a ribokinase (rbsK1 rbsK2) double mutant, no derepression of the rbs operon in the presence of ribose was observed. Analysis of the ribose stimulon in the C. glutamicum wildtype revealed transcriptional induction of the uriR and rbs operons as well as of the rbsK2 gene. The inconsistency between the existence of functional RbsR-binding sites upstream of the ribokinase genes, their transcriptional induction during growth on ribose, and the missing induction in the rbsR mutant suggested the involvement of a second transcriptional regulator. Simultaneous deletion of the regulatory genes rbsR and uriR finally demonstrated a transcriptional co-control of the rbs and uriR operons and the rbsK2 gene by both regulators, RbsR and UriR, which were furthermore shown to recognize the same cognate DNA sequences in the operators of their target genes.
Erscheinungsjahr
2009
Zeitschriftentitel
MICROBIOLOGY
Band
155
Ausgabe
1
Seite(n)
150-164
ISSN
1350-0872
eISSN
1465-2080
Page URI
https://pub.uni-bielefeld.de/record/1635951

Zitieren

Nentwich SS, Brinkrolf K, Gaigalat L, et al. Characterization of the Lacl-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032. MICROBIOLOGY. 2009;155(1):150-164.
Nentwich, S. S., Brinkrolf, K., Gaigalat, L., Hueser, A. T., Rey, D. A., Mohrbach, T., Marin, K., et al. (2009). Characterization of the Lacl-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032. MICROBIOLOGY, 155(1), 150-164. https://doi.org/10.1099/mic.0.020388-0
Nentwich, Svenja S., Brinkrolf, Karina, Gaigalat, Lars, Hueser, Andrea T., Rey, Daniel A., Mohrbach, Tobias, Marin, Kay, Pühler, Alfred, Tauch, Andreas, and Kalinowski, Jörn. 2009. “Characterization of the Lacl-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032”. MICROBIOLOGY 155 (1): 150-164.
Nentwich, S. S., Brinkrolf, K., Gaigalat, L., Hueser, A. T., Rey, D. A., Mohrbach, T., Marin, K., Pühler, A., Tauch, A., and Kalinowski, J. (2009). Characterization of the Lacl-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032. MICROBIOLOGY 155, 150-164.
Nentwich, S.S., et al., 2009. Characterization of the Lacl-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032. MICROBIOLOGY, 155(1), p 150-164.
S.S. Nentwich, et al., “Characterization of the Lacl-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032”, MICROBIOLOGY, vol. 155, 2009, pp. 150-164.
Nentwich, S.S., Brinkrolf, K., Gaigalat, L., Hueser, A.T., Rey, D.A., Mohrbach, T., Marin, K., Pühler, A., Tauch, A., Kalinowski, J.: Characterization of the Lacl-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032. MICROBIOLOGY. 155, 150-164 (2009).
Nentwich, Svenja S., Brinkrolf, Karina, Gaigalat, Lars, Hueser, Andrea T., Rey, Daniel A., Mohrbach, Tobias, Marin, Kay, Pühler, Alfred, Tauch, Andreas, and Kalinowski, Jörn. “Characterization of the Lacl-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032”. MICROBIOLOGY 155.1 (2009): 150-164.

19 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Searching whole genome sequences for biochemical identification features of emerging and reemerging pathogenic Corynebacterium species.
Santos AS, Ramos RT, Silva A, Hirata R, Mattos-Guaraldi AL, Meyer R, Azevedo V, Felicori L, Pacheco LGC., Funct Integr Genomics 18(5), 2018
PMID: 29752561
Role of O2 in the Growth of Rhizobium leguminosarum bv. viciae 3841 on Glucose and Succinate.
Wheatley RM, Ramachandran VK, Geddes BA, Perry BJ, Yost CK, Poole PS., J Bacteriol 199(1), 2017
PMID: 27795326
Ribose operon repressor (RbsR) contributes to the adhesion of Aeromonas hydrophila to Anguilla japonica mucus.
Lin G, Chen W, Su Y, Qin Y, Huang L, Yan Q., Microbiologyopen 6(4), 2017
PMID: 28127946
Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR.
Uhde A, Brühl N, Goldbeck O, Matano C, Gurow O, Rückert C, Marin K, Wendisch VF, Krämer R, Seibold GM., J Bacteriol 198(16), 2016
PMID: 27274030
A novel pyruvate kinase and its application in lactic acid production under oxygen deprivation in Corynebacterium glutamicum.
Chai X, Shang X, Zhang Y, Liu S, Liang Y, Zhang Y, Wen T., BMC Biotechnol 16(1), 2016
PMID: 27852252
Regulation of Streptococcus mutans PTS Bio by the transcriptional repressor NigR.
Vujanac M, Iyer VS, Sengupta M, Ajdic D., Mol Oral Microbiol 30(4), 2015
PMID: 25580872
Anaerobic growth of Corynebacterium glutamicum via mixed-acid fermentation.
Michel A, Koch-Koerfges A, Krumbach K, Brocker M, Bott M., Appl Environ Microbiol 81(21), 2015
PMID: 26276118
Proteome response of Corynebacterium glutamicum to high concentration of industrially relevant C₄ and C₅ dicarboxylic acids.
Vasco-Cárdenas MF, Baños S, Ramos A, Martín JF, Barreiro C., J Proteomics 85(), 2013
PMID: 23624027
Corynebacterium glutamicum as a potent biocatalyst for the bioconversion of pentose sugars to value-added products.
Gopinath V, Murali A, Dhar KS, Nampoothiri KM., Appl Microbiol Biotechnol 93(1), 2012
PMID: 22094976
Carbohydrate metabolism in Bifidobacteria.
Pokusaeva K, Fitzgerald GF, van Sinderen D., Genes Nutr 6(3), 2011
PMID: 21484167
Global transcriptome response in Lactobacillus sakei during growth on ribose.
McLeod A, Snipen L, Naterstad K, Axelsson L., BMC Microbiol 11(), 2011
PMID: 21702908
Ribose utilization by the human commensal Bifidobacterium breve UCC2003.
Pokusaeva K, Neves AR, Zomer A, O'Connell-Motherway M, MacSharry J, Curley P, Fitzgerald GF, van Sinderen D., Microb Biotechnol 3(3), 2010
PMID: 21255330

43 References

Daten bereitgestellt von Europe PubMed Central.

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences.
Brinkrolf K, Ploger S, Solle S, Brune I, Nentwich SS, Huser AT, Kalinowski J, Puhler A, Tauch A., Microbiology (Reading, Engl.) 154(Pt 4), 2008
PMID: 18375800
Structural analysis of lac repressor bound to allosteric effectors.
Daber R, Stayrook S, Rosenberg A, Lewis M., J. Mol. Biol. 370(4), 2007
PMID: 17543986
EMMA: a platform for consistent storage and efficient analysis of microarray data.
Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Puhler A, Meyer F., J. Biotechnol. 106(2-3), 2003
PMID: 14651856
Prediction of transcription terminators in bacterial genomes.
Ermolaeva MD, Khalak HG, White O, Smith HO, Salzberg SL., J. Mol. Biol. 301(1), 2000
PMID: 10926490
Industrial production of amino acids by coryneform bacteria.
Hermann T., J. Biotechnol. 104(1-3), 2003
PMID: 12948636
ABC transporters: physiology, structure and mechanism--an overview.
Higgins CF., Res. Microbiol. 152(3-4), 2001
PMID: 11421269
Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension.
Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR., Gene 77(1), 1989
PMID: 2744488
Analysis of a cis-active sequence mediating catabolite repression in gram-positive bacteria.
Hueck CJ, Hillen W, Saier MH Jr., Res. Microbiol. 145(7), 1994
PMID: 7855437
Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source.
Huser AT, Becker A, Brune I, Dondrup M, Kalinowski J, Plassmeier J, Puhler A, Wiegrabe I, Tauch A., J. Biotechnol. 106(2-3), 2003
PMID: 14651867
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Protoplast transformation of glutamate-producing bacteria with plasmid DNA.
Katsumata R, Ozaki A, Oka T, Furuya A., J. Bacteriol. 159(1), 1984
PMID: 6145700
Identification of a co-repressor binding site in catabolite control protein CcpA.
Kraus A, Kuster E, Wagner A, Hoffmann K, Hillen W., Mol. Microbiol. 30(5), 1998
PMID: 9988473
D-ribose metabolism in Escherichia coli K-12: genetics, regulation, and transport.
Lopilato JE, Garwin JL, Emr SD, Silhavy TJ, Beckwith JR., J. Bacteriol. 158(2), 1984
PMID: 6327616
Evolution of transcription factors and the gene regulatory network in Escherichia coli.
Madan Babu M, Teichmann SA., Nucleic Acids Res. 31(4), 2003
PMID: 12582243
CDD: a curated Entrez database of conserved domain alignments.
Marchler-Bauer A, Anderson JB, DeWeese-Scott C, Fedorova ND, Geer LY, He S, Hurwitz DI, Jackson JD, Jacobs AR, Lanczycki CJ, Liebert CA, Liu C, Madej T, Marchler GH, Mazumder R, Nikolskaya AN, Panchenko AR, Rao BS, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Vasudevan S, Wang Y, Yamashita RA, Yin JJ, Bryant SH., Nucleic Acids Res. 31(1), 2003
PMID: 12520028
The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes.
Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crecy-Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch GD, Rodionov DA, Ruckert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye Y, Zagnitko O, Vonstein V., Nucleic Acids Res. 33(17), 2005
PMID: 16214803
Corynebacterium glutamicum: a dissection of the PTS.
Parche S, Burkovski A, Sprenger GA, Weil B, Kramer R, Titgemeyer F., J. Mol. Microbiol. Biotechnol. 3(3), 2001
PMID: 11361073
Promoters of Corynebacterium glutamicum.
Patek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G., J. Biotechnol. 104(1-3), 2003
PMID: 12948648
The repertoire of DNA-binding transcriptional regulators in Escherichia coli K-12.
Perez-Rueda E, Collado-Vides J., Nucleic Acids Res. 28(8), 2000
PMID: 10734204
A novel method for accurate operon predictions in all sequenced prokaryotes.
Price MN, Huang KH, Alm EJ, Arkin AP., Nucleic Acids Res. 33(3), 2005
PMID: 15701760
EMBOSS: the European Molecular Biology Open Software Suite.
Rice P, Longden I, Bleasby A., Trends Genet. 16(6), 2000
PMID: 10827456
Transcriptional regulation of pentose utilisation systems in the Bacillus/Clostridium group of bacteria.
Rodionov DA, Mironov AA, Gelfand MS., FEMS Microbiol. Lett. 205(2), 2001
PMID: 11750820
NMR application probes a novel and ubiquitous family of enzymes that alter monosaccharide configuration.
Ryu KS, Kim C, Kim I, Yoo S, Choi BS, Park C., J. Biol. Chem. 279(24), 2004
PMID: 15060078
Corynebacterium glutamicum DNA is subjected to methylation-restriction in Escherichia coli.
Tauch A, Kirchner O, Wehmeier L, Kalinowski J, Puhler A., FEMS Microbiol. Lett. 123(3), 1994
PMID: 7988915

AUTHOR UNKNOWN, Plasmid 34(), 1995
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668

Wehmeier, Microbiology (Reading, Engl.) 147(3), 2001
Analysis of a ribose transport operon from Bacillus subtilis.
Woodson K, Devine KM., Microbiology (Reading, Engl.) 140 ( Pt 8)(), 1994
PMID: 7921236
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19118356
PubMed | Europe PMC

Suchen in

Google Scholar