Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide

Strittmatter AW, Liesegang H, Rabus R, Decker I, Amann J, Andres S, Henne A, Fricke WF, Martinez-Arias R, Bartels D, Goesmann A, et al. (2009)
ENVIRONMENTAL MICROBIOLOGY 11(5): 1038-1055.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Strittmatter, Axel W.; Liesegang, Heiko; Rabus, Ralf; Decker, Iwona; Amann, Judith; Andres, Soenke; Henne, Anke; Fricke, Wolfgang Florian; Martinez-Arias, Rosa; Bartels, Daniela; Goesmann, AlexanderUniBi ; Krause, Lutz
Alle
Abstract / Bemerkung
Sulfate-reducing bacteria (SRB) belonging to the metabolically versatile Desulfobacteriaceae are abundant in marine sediments and contribute to the global carbon cycle by complete oxidation of organic compounds. Desulfobacterium autotrophicum HRM2 is the first member of this ecophysiologically important group with a now available genome sequence. With 5.6 megabasepairs (Mbp) the genome of Db. autotrophicum HRM2 is about 2 Mbp larger than the sequenced genomes of other sulfate reducers (SRB). A high number of genome plasticity elements (> 100 transposon-related genes), several regions of GC discontinuity and a high number of repetitive elements (132 paralogous genes Mbp(-1)) point to a different genome evolution when comparing with Desulfovibrio spp. The metabolic versatility of Db. autotrophicum HRM2 is reflected in the presence of genes for the degradation of a variety of organic compounds including long-chain fatty acids and for the Wood-Ljungdahl pathway, which enables the organism to completely oxidize acetyl-CoA to CO2 but also to grow chemolithoautotrophically. The presence of more than 250 proteins of the sensory/regulatory protein families should enable Db. autotrophicum HRM2 to efficiently adapt to changing environmental conditions. Genes encoding periplasmic or cytoplasmic hydrogenases and formate dehydrogenases have been detected as well as genes for the transmembrane TpII-c(3), Hme and Rnf complexes. Genes for subunits A, B, C and D as well as for the proposed novel subunits L and F of the heterodisulfide reductases are present. This enzyme is involved in energy conservation in methanoarchaea and it is speculated that it exhibits a similar function in the process of dissimilatory sulfate reduction in Db. autotrophicum HRM2.
Erscheinungsjahr
2009
Zeitschriftentitel
ENVIRONMENTAL MICROBIOLOGY
Band
11
Ausgabe
5
Seite(n)
1038-1055
ISSN
1462-2912
eISSN
1462-2920
Page URI
https://pub.uni-bielefeld.de/record/1634097

Zitieren

Strittmatter AW, Liesegang H, Rabus R, et al. Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. ENVIRONMENTAL MICROBIOLOGY. 2009;11(5):1038-1055.
Strittmatter, A. W., Liesegang, H., Rabus, R., Decker, I., Amann, J., Andres, S., Henne, A., et al. (2009). Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. ENVIRONMENTAL MICROBIOLOGY, 11(5), 1038-1055. https://doi.org/10.1111/j.1462-2920.2008.01825.x
Strittmatter, Axel W., Liesegang, Heiko, Rabus, Ralf, Decker, Iwona, Amann, Judith, Andres, Soenke, Henne, Anke, et al. 2009. “Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide”. ENVIRONMENTAL MICROBIOLOGY 11 (5): 1038-1055.
Strittmatter, A. W., Liesegang, H., Rabus, R., Decker, I., Amann, J., Andres, S., Henne, A., Fricke, W. F., Martinez-Arias, R., Bartels, D., et al. (2009). Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. ENVIRONMENTAL MICROBIOLOGY 11, 1038-1055.
Strittmatter, A.W., et al., 2009. Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. ENVIRONMENTAL MICROBIOLOGY, 11(5), p 1038-1055.
A.W. Strittmatter, et al., “Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide”, ENVIRONMENTAL MICROBIOLOGY, vol. 11, 2009, pp. 1038-1055.
Strittmatter, A.W., Liesegang, H., Rabus, R., Decker, I., Amann, J., Andres, S., Henne, A., Fricke, W.F., Martinez-Arias, R., Bartels, D., Goesmann, A., Krause, L., Pühler, A., Klenk, H.-P., Richter, M., Schueler, M., Gloeckner, F.O., Meyerdierks, A., Gottschalk, G., Amann, R.: Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. ENVIRONMENTAL MICROBIOLOGY. 11, 1038-1055 (2009).
Strittmatter, Axel W., Liesegang, Heiko, Rabus, Ralf, Decker, Iwona, Amann, Judith, Andres, Soenke, Henne, Anke, Fricke, Wolfgang Florian, Martinez-Arias, Rosa, Bartels, Daniela, Goesmann, Alexander, Krause, Lutz, Pühler, Alfred, Klenk, Hans-Peter, Richter, Michael, Schueler, Margarete, Gloeckner, Frank Oliver, Meyerdierks, Anke, Gottschalk, Gerhard, and Amann, Rudolf. “Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide”. ENVIRONMENTAL MICROBIOLOGY 11.5 (2009): 1038-1055.

50 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Quantitative Metaproteomics Highlight the Metabolic Contributions of Uncultured Phylotypes in a Thermophilic Anaerobic Digester.
Hagen LH, Frank JA, Zamanzadeh M, Eijsink VGH, Pope PB, Horn SJ, Arntzen MØ., Appl Environ Microbiol 83(2), 2017
PMID: 27815274
Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane.
Krukenberg V, Harding K, Richter M, Glöckner FO, Gruber-Vodicka HR, Adam B, Berg JS, Knittel K, Tegetmeyer HE, Boetius A, Wegener G., Environ Microbiol 18(9), 2016
PMID: 26971539
Genomic insights into members of the candidate phylum Hyd24-12 common in mesophilic anaerobic digesters.
Kirkegaard RH, Dueholm MS, McIlroy SJ, Nierychlo M, Karst SM, Albertsen M, Nielsen PH., ISME J 10(10), 2016
PMID: 27058503
Anthropogenic impact on mangrove sediments triggers differential responses in the heavy metals and antibiotic resistomes of microbial communities.
Cabral L, Júnior GVL, Pereira de Sousa ST, Dias ACF, Lira Cadete L, Andreote FD, Hess M, de Oliveira VM., Environ Pollut 216(), 2016
PMID: 27297401
Single-cell Sequencing of Thiomargarita Reveals Genomic Flexibility for Adaptation to Dynamic Redox Conditions.
Winkel M, Salman-Carvalho V, Woyke T, Richter M, Schulz-Vogt HN, Flood BE, Bailey JV, Mußmann M., Front Microbiol 7(), 2016
PMID: 27446006
Fractionation of Hydrogen Isotopes by Sulfate- and Nitrate-Reducing Bacteria.
Osburn MR, Dawson KS, Fogel ML, Sessions AL., Front Microbiol 7(), 2016
PMID: 27531993
Nutrient enrichment induces dormancy and decreases diversity of active bacteria in salt marsh sediments.
Kearns PJ, Angell JH, Howard EM, Deegan LA, Stanley RH, Bowen JL., Nat Commun 7(), 2016
PMID: 27666199
Metaproteomics and metabolomics analyses of chronically petroleum-polluted sites reveal the importance of general anaerobic processes uncoupled with degradation.
Bargiela R, Herbst FA, Martínez-Martínez M, Seifert J, Rojo D, Cappello S, Genovese M, Crisafi F, Denaro R, Chernikova TN, Barbas C, von Bergen M, Yakimov MM, Ferrer M, Golyshin PN., Proteomics 15(20), 2015
PMID: 26201687
Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi.
Wasmund K, Schreiber L, Lloyd KG, Petersen DG, Schramm A, Stepanauskas R, Jørgensen BB, Adrian L., ISME J 8(2), 2014
PMID: 23966099
Deciphering unusual uncultured magnetotactic multicellular prokaryotes through genomics.
Abreu F, Morillo V, Nascimento FF, Werneck C, Cantão ME, Ciapina LP, de Almeida LG, Lefèvre CT, Bazylinski DA, de Vasconcelos AT, Lins U., ISME J 8(5), 2014
PMID: 24196322
Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments.
Glass JB, Yu H, Steele JA, Dawson KS, Sun S, Chourey K, Pan C, Hettich RL, Orphan VJ., Environ Microbiol 16(6), 2014
PMID: 24148160
Single cell genomic study of Dehalococcoidetes species from deep-sea sediments of the Peruvian Margin.
Kaster AK, Mayer-Blackwell K, Pasarelli B, Spormann AM., ISME J 8(9), 2014
PMID: 24599070
The "bacterial heterodisulfide" DsrC is a key protein in dissimilatory sulfur metabolism.
Venceslau SS, Stockdreher Y, Dahl C, Pereira IA., Biochim Biophys Acta 1837(7), 2014
PMID: 24662917
A Brief Review: The Z-curve Theory and its Application in Genome Analysis.
Zhang R, Zhang CT., Curr Genomics 15(2), 2014
PMID: 24822026
Recognition of Protein-coding Genes Based on Z-curve Algorithms.
-Biao Guo F, Lin Y, -Ling Chen L., Curr Genomics 15(2), 2014
PMID: 24822027
Origin and evolution of the sodium -pumping NADH: ubiquinone oxidoreductase.
Reyes-Prieto A, Barquera B, Juárez O., PLoS One 9(5), 2014
PMID: 24809444
Characterization of the surfaceome of the metal-reducing bacterium Desulfotomaculum reducens.
Dalla Vecchia E, Shao PP, Suvorova E, Chiappe D, Hamelin R, Bernier-Latmani R., Front Microbiol 5(), 2014
PMID: 25191310
Comparison of environmental and isolate Sulfobacillus genomes reveals diverse carbon, sulfur, nitrogen, and hydrogen metabolisms.
Justice NB, Norman A, Brown CT, Singh A, Thomas BC, Banfield JF., BMC Genomics 15(), 2014
PMID: 25511286
Complete genome, catabolic sub-proteomes and key-metabolites of Desulfobacula toluolica Tol2, a marine, aromatic compound-degrading, sulfate-reducing bacterium.
Wöhlbrand L, Jacob JH, Kube M, Mussmann M, Jarling R, Beck A, Amann R, Wilkes H, Reinhardt R, Rabus R., Environ Microbiol 15(5), 2013
PMID: 23088741
A genomic approach to the cryptic secondary metabolome of the anaerobic world.
Letzel AC, Pidot SJ, Hertweck C., Nat Prod Rep 30(3), 2013
PMID: 23263685
Early bioenergetic evolution.
Sousa FL, Thiergart T, Landan G, Nelson-Sathi S, Pereira IA, Allen JF, Lane N, Martin WF., Philos Trans R Soc Lond B Biol Sci 368(1622), 2013
PMID: 23754820
Giant hydrogen sulfide plume in the oxygen minimum zone off Peru supports chemolithoautotrophy.
Schunck H, Lavik G, Desai DK, Großkopf T, Kalvelage T, Löscher CR, Paulmier A, Contreras S, Siegel H, Holtappels M, Rosenstiel P, Schilhabel MB, Graco M, Schmitz RA, Kuypers MM, Laroche J., PLoS One 8(8), 2013
PMID: 23990875
The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation.
Callaghan AV, Morris BE, Pereira IA, McInerney MJ, Austin RN, Groves JT, Kukor JJ, Suflita JM, Young LY, Zylstra GJ, Wawrik B., Environ Microbiol 14(1), 2012
PMID: 21651686
Genetic analysis of the upper phenylacetate catabolic pathway in the production of tropodithietic acid by Phaeobacter gallaeciensis.
Berger M, Brock NL, Liesegang H, Dogs M, Preuth I, Simon M, Dickschat JS, Brinkhoff T., Appl Environ Microbiol 78(10), 2012
PMID: 22407685
Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea.
Kaster AK, Moll J, Parey K, Thauer RK., Proc Natl Acad Sci U S A 108(7), 2011
PMID: 21262829
A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea.
Pereira IA, Ramos AR, Grein F, Marques MC, da Silva SM, Venceslau SS., Front Microbiol 2(), 2011
PMID: 21747791
How sulphate-reducing microorganisms cope with stress: lessons from systems biology.
Zhou J, He Q, Hemme CL, Mukhopadhyay A, Hillesland K, Zhou A, He Z, Van Nostrand JD, Hazen TC, Stahl DA, Wall JD, Arkin AP., Nat Rev Microbiol 9(6), 2011
PMID: 21572460
Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group.
Meyerdierks A, Kube M, Kostadinov I, Teeling H, Glöckner FO, Reinhardt R, Amann R., Environ Microbiol 12(2), 2010
PMID: 19878267
The genome of Syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production.
Sieber JR, Sims DR, Han C, Kim E, Lykidis A, Lapidus AL, McDonnald E, Rohlin L, Culley DE, Gunsalus R, McInerney MJ., Environ Microbiol 12(8), 2010
PMID: 21966920
The genome of the Gram-positive metal- and sulfate-reducing bacterium Desulfotomaculum reducens strain MI-1.
Junier P, Junier T, Podell S, Sims DR, Detter JC, Lykidis A, Han CS, Wigginton NS, Gaasterland T, Bernier-Latmani R., Environ Microbiol 12(10), 2010
PMID: 20482743
Complete genome sequence of Desulfarculus baarsii type strain (2st14).
Sun H, Spring S, Lapidus A, Davenport K, Del Rio TG, Tice H, Nolan M, Copeland A, Cheng JF, Lucas S, Tapia R, Goodwin L, Pitluck S, Ivanova N, Pagani I, Mavromatis K, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Hauser L, Chang YJ, Jeffries CD, Detter JC, Han C, Rohde M, Brambilla E, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Land M., Stand Genomic Sci 3(3), 2010
PMID: 21304732
Complete genome sequence of Desulfotomaculum acetoxidans type strain (5575).
Spring S, Lapidus A, Schröder M, Gleim D, Sims D, Meincke L, Glavina Del Rio T, Tice H, Copeland A, Cheng JF, Lucas S, Chen F, Nolan M, Bruce D, Goodwin L, Pitluck S, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Chain P, Saunders E, Brettin T, Detter JC, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Han C., Stand Genomic Sci 1(3), 2009
PMID: 21304664

100 References

Daten bereitgestellt von Europe PubMed Central.

Various functions of selenols and thiols in anaerobic gram-positive, amino acids-utilizing bacteria.
Andreesen JR, Wagner M, Sonntag D, Kohlstock M, Harms C, Gursinsky T, Jager J, Parther T, Kabisch U, Grantzdorffer A, Pich A, Sohling B., Biofactors 10(2-3), 1999
PMID: 10609892
CRITICA: coding region identification tool invoking comparative analysis.
Badger JH, Olsen GJ, Woese CR., Mol. Biol. Evol. 16(4), 1999
PMID: 10331277
The Pfam protein families database.
Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR., Nucleic Acids Res. 32(Database issue), 2004
PMID: 14681378
Methylmalonyl-CoA decarboxylase from Propionigenium modestum--cloning and sequencing of the structural genes and purification of the enzyme complex.
Bott M, Pfister K, Burda P, Kalbermatter O, Woehlke G, Dimroth P., Eur. J. Biochem. 250(2), 1997
PMID: 9428714
Anaerobic acetate oxidation to CO by Desulfobacter postgatei. 1. Demonstration of all enzymes required for the operation of the citric acid cycle
Brandis-Heep A, Gebhardt NA, Thauer RK, Widdel F, Pfennig N., 1983
The genome sequence of Clostridium tetani, the causative agent of tetanus disease.
Bruggemann H, Baumer S, Fricke WF, Wiezer A, Liesegang H, Decker I, Herzberg C, Martinez-Arias R, Merkl R, Henne A, Gottschalk G., Proc. Natl. Acad. Sci. U.S.A. 100(3), 2003
PMID: 12552129
Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov
Brysch K, Schneider C, Fuchs G, Widdel F., 1987
Pathways of organic carbon oxidation in three continental margin sediments.
Canfield DE, Jorgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, Thamdrup B, Hansen JW, Nielsen LP, Hall PO, Canfield DE., Mar. Geol. 113(), 1993
PMID: 11539842
Methylmalonyl-CoA mutase encoding gene of Sinorhizobium meliloti.
Charles TC, Aneja P., Gene 226(1), 1999
PMID: 9889346

Copeland A, Lucas S, Lapidus A, Barry K, Detter JC, Glavina T., 0

Copeland A, Lucas S, Lapidus A, Barry K, Glavina T, Dalin E., 0
Oxygen respiration by desulfovibrio species.
Cypionka H., Annu. Rev. Microbiol. 54(), 2000
PMID: 11018146
Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients
Cypionka H, Widdel F, Pfennig N., 1985
The crystal structure of the hexadeca-heme cytochrome Hmc and a structural model of its complex with cytochrome c(3).
Czjzek M, ElAntak L, Zamboni V, Morelli X, Dolla A, Guerlesquin F, Bruschi M., Structure 10(12), 2002
PMID: 12467575
Improved microbial gene identification with GLIMMER.
Delcher AL, Harmon D, Kasif S, White O, Salzberg SL., Nucleic Acids Res. 27(23), 1999
PMID: 10556321
Alignment of whole genomes.
Delcher AL, Kasif S, Fleischmann RD, Peterson J, White O, Salzberg SL., Nucleic Acids Res. 27(11), 1999
PMID: 10325427
The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea.
Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, Martinez-Arias R, Henne A, Wiezer A, Baumer S, Jacobi C, Bruggemann H, Lienard T, Christmann A, Bomeke M, Steckel S, Bhattacharyya A, Lykidis A, Overbeek R, Klenk HP, Gunsalus RP, Fritz HJ, Gottschalk G., J. Mol. Microbiol. Biotechnol. 4(4), 2002
PMID: 12125824
Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin.
Dhillon A, Teske A, Dillon J, Stahl DA, Sogin ML., Appl. Environ. Microbiol. 69(5), 2003
PMID: 12732547
The PROSITE database, its status in 2002.
Falquet L, Pagni M, Bucher P, Hulo N, Sigrist CJ, Hofmann K, Bairoch A., Nucleic Acids Res. 30(1), 2002
PMID: 11752303
Detritus food chains of aquatic ecosystems: the role of bacteria
Fenchel TM, Jørgensen BB., 1977
Pfam: clans, web tools and services.
Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A., Nucleic Acids Res. 34(Database issue), 2006
PMID: 16381856
Function of oxygen resistance proteins in the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris hildenborough.
Fournier M, Zhang Y, Wildschut JD, Dolla A, Voordouw JK, Schriemer DC, Voordouw G., J. Bacteriol. 185(1), 2003
PMID: 12486042
Response of the anaerobe Desulfovibrio vulgaris Hildenborough to oxidative conditions: proteome and transcript analysis.
Fournier M, Aubert C, Dermoun Z, Durand MC, Moinier D, Dolla A., Biochimie 88(1), 2005
PMID: 16040186
The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis.
Fricke WF, Seedorf H, Henne A, Kruer M, Liesegang H, Hedderich R, Gottschalk G, Thauer RK., J. Bacteriol. 188(2), 2006
PMID: 16385054
Novel domains of the prokaryotic two-component signal transduction systems.
Galperin MY, Nikolskaya AN, Koonin EV., FEMS Microbiol. Lett. 203(1), 2001
PMID: 11557134
The nucleotide sequence of the cyd locus encoding the two subunits of the cytochrome d terminal oxidase complex of Escherichia coli.
Green GN, Fang H, Lin RJ, Newton G, Mather M, Georgiou CD, Gennis RB., J. Biol. Chem. 263(26), 1988
PMID: 2843510
Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris hildenborough by nitrite.
Haveman SA, Greene EA, Stilwell CP, Voordouw JK, Voordouw G., J. Bacteriol. 186(23), 2004
PMID: 15547266
Energy-converting [NiFe] hydrogenases: more than just H2 activation.
Hedderich R, Forzi L., J. Mol. Microbiol. Biotechnol. 10(2-4), 2005
PMID: 16645307
The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough.
Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA, Ward N, Methe B, Brinkac LM, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Fouts D, Haft DH, Selengut J, Peterson JD, Davidsen TM, Zafar N, Zhou L, Radune D, Dimitrov G, Hance M, Tran K, Khouri H, Gill J, Utterback TR, Feldblyum TV, Wall JD, Voordouw G, Fraser CM., Nat. Biotechnol. 22(5), 2004
PMID: 15077118
Tmbase – a database of membrane spanning proteins segments
Hofmann K, Stoffel W., 1993
Conditionally amplifiable inserts in pBAC vectors
Hradecna Z, Wild J, Szybalski W., 1998
Aerobic organic carbon mineralization by sulfate-reducing bacteria in the oxygen-saturated photic zone of a hypersaline microbial mat
Jonkers HM, Koh I-O, Behrend P, Muyzer G, de D., 2005
Mineralization of organic matter in the sea bed – the role of sulphate reduction
Jørgensen BB., 1982
Ecology of the sulphur cycle: oxidative pathways in sediments
Jørgensen BB., 1987
Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes.
Klein M, Friedrich M, Roger AJ, Hugenholtz P, Fishbain S, Abicht H, Blackall LL, Stahl DA, Wagner M., J. Bacteriol. 183(20), 2001
PMID: 11567003
The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus.
Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, Richardson DL, Kerlavage AR, Graham DE, Kyrpides NC, Fleischmann RD, Quackenbush J, Lee NH, Sutton GG, Gill S, Kirkness EF, Dougherty BA, McKenney K, Adams MD, Loftus B, Peterson S, Reich CI, McNeil LK, Badger JH, Glodek A, Zhou L, Overbeek R, Gocayne JD, Weidman JF, McDonald L, Utterback T, Cotton MD, Spriggs T, Artiach P, Kaine BP, Sykes SM, Sadow PW, D'Andrea KP, Bowman C, Fujii C, Garland SA, Mason TM, Olsen GJ, Fraser CM, Smith HO, Woese CR, Venter JC., Nature 390(6658), 1997
PMID: 9389475
GISMO--gene identification using a support vector machine for ORF classification.
Krause L, McHardy AC, Nattkemper TW, Puhler A, Stoye J, Meyer F., Nucleic Acids Res. 35(2), 2006
PMID: 17175534
REPuter: the manifold applications of repeat analysis on a genomic scale.
Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R., Nucleic Acids Res. 29(22), 2001
PMID: 11713313
Oxidative and reductive acetyl-CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. 1. Characterization and metabolic function of the cellular tetrahydropterin
Länge S, Scholtz R, Fuchs G., 1989
The 'strict' anaerobe Desulfovibrio gigas contains a membrane-bound oxygen-reducing respiratory chain.
Lemos RS, Gomes CM, Santana M, LeGall J, Xavier AV, Teixeira M., FEBS Lett. 496(1), 2001
PMID: 11343703
Community structure and activity of sulfate-reducing bacteria in an intertidal surface sediment: a multi-method approach
Llobet-Brossa E, Rabus R, Böttcher ME, Könneke M, Finke N, Schramm A., 2002
Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system.
Lumppio HL, Shenvi NV, Summers AO, Voordouw G, Kurtz DM Jr., J. Bacteriol. 183(1), 2001
PMID: 11114906
Development of joint application strategies for two microbial gene finders.
McHardy AC, Goesmann A, Puhler A, Meyer F., Bioinformatics 20(10), 2004
PMID: 14988122
Two distinct heterodisulfide reductase-like enzymes in the sulfate-reducing archaeon Archaeoglobus profundus.
Mander GJ, Pierik AJ, Huber H, Hedderich R., Eur. J. Biochem. 271(6), 2004
PMID: 15009189
GD-Search: protein domain annotations on the fly
Marchler-Bauer R, Bryant SH., 2004
Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview.
Matias PM, Pereira IA, Soares CM, Carrondo MA., Prog. Biophys. Mol. Biol. 89(3), 2004
PMID: 15950057
SIGI: score-based identification of genomic islands.
Merkl R., BMC Bioinformatics 5(), 2004
PMID: 15113412
Genome of Geobacter sulfurreducens: metal reduction in subsurface environments.
Methe BA, Nelson KE, Eisen JA, Paulsen IT, Nelson W, Heidelberg JF, Wu D, Wu M, Ward N, Beanan MJ, Dodson RJ, Madupu R, Brinkac LM, Daugherty SC, DeBoy RT, Durkin AS, Gwinn M, Kolonay JF, Sullivan SA, Haft DH, Selengut J, Davidsen TM, Zafar N, White O, Tran B, Romero C, Forberger HA, Weidman J, Khouri H, Feldblyum TV, Utterback TR, Van Aken SE, Lovley DR, Fraser CM., Science 302(5652), 2003
PMID: 14671304
GenDB--an open source genome annotation system for prokaryote genomes.
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A., Nucleic Acids Res. 31(8), 2003
PMID: 12682369
The primary structure of the subunits of carbon monoxide dehydrogenase/acetyl-CoA synthase from Clostridium thermoaceticum.
Morton TA, Runquist JA, Ragsdale SW, Shanmugasundaram T, Wood HG, Ljungdahl LG., J. Biol. Chem. 266(35), 1991
PMID: 1748656
Clustered genes related to sulfate respiration in uncultured prokaryotes support the theory of their concomitant horizontal transfer.
Mussmann M, Richter M, Lombardot T, Meyerdierks A, Kuever J, Kube M, Glockner FO, Amann R., J. Bacteriol. 187(20), 2005
PMID: 16199583
Complete genome sequence of the dehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195.
Nonaka H, Keresztes G, Shinoda Y, Ikenaga Y, Abe M, Naito K, Inatomi K, Furukawa K, Inui M, Yukawa H., J. Bacteriol. 188(6), 2006
PMID: 16513756
The ERGO genome analysis and discovery system.
Overbeek R, Larsen N, Walunas T, D'Souza M, Pusch G, Selkov E Jr, Liolios K, Joukov V, Kaznadzey D, Anderson I, Bhattacharyya A, Burd H, Gardner W, Hanke P, Kapatral V, Mikhailova N, Vasieva O, Osterman A, Vonstein V, Fonstein M, Ivanova N, Kyrpides N., Nucleic Acids Res. 31(1), 2003
PMID: 12519973
Biochemical, genetic and genomic characterization of anaerobic electron transport pathways in sulphate-reducing delta-proteobacteria
Pereira IAC, Haveman SA, Voordouw G., 2007
The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway.
Pieulle L, Morelli X, Gallice P, Lojou E, Barbier P, Czjzek M, Bianco P, Guerlesquin F, Hatchikian EC., J. Mol. Biol. 354(1), 2005
PMID: 16226767
A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774.
Pires RH, Lourenco AI, Morais F, Teixeira M, Xavier AV, Saraiva LM, Pereira IA., Biochim. Biophys. Acta 1605(1-3), 2003
PMID: 12907302
Functional genomics of sulphate-reducing prokaryotes
Rabus R, Strittmatter A., 2007
Dissimilatory sulfate- and sulfur-reducing prokaryotes
Rabus R, Hansen TA, Widdel F., 2000
The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments.
Rabus R, Ruepp A, Frickey T, Rattei T, Fartmann B, Stark M, Bauer M, Zibat A, Lombardot T, Becker I, Amann J, Gellner K, Teeling H, Leuschner WD, Glockner FO, Lupas AN, Amann R, Klenk HP., Environ. Microbiol. 6(9), 2004
PMID: 15305914
Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing.
Ren SX, Fu G, Jiang XG, Zeng R, Miao YG, Xu H, Zhang YX, Xiong H, Lu G, Lu LF, Jiang HQ, Jia J, Tu YF, Jiang JX, Gu WY, Zhang YQ, Cai Z, Sheng HH, Yin HF, Zhang Y, Zhu GF, Wan M, Huang HL, Qian Z, Wang SY, Ma W, Yao ZJ, Shen Y, Qiang BQ, Xia QC, Guo XK, Danchin A, Saint Girons I, Somerville RL, Wen YM, Shi MH, Chen Z, Xu JG, Zhao GP., Nature 422(6934), 2003
PMID: 12712204
A novel membrane-bound Ech [NiFe] hydrogenase in Desulfovibrio gigas.
Rodrigues R, Valente FM, Pereira IA, Oliveira S, Rodrigues-Pousada C., Biochem. Biophys. Res. Commun. 306(2), 2003
PMID: 12804572
The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a potential transmembrane redox protein complex.
Rossi M, Pollock WB, Reij MW, Keon RG, Fu R, Voordouw G., J. Bacteriol. 175(15), 1993
PMID: 8335628
Physical map location of the new Escherichia coli gene sbm.
Roy I, Leadlay PF., J. Bacteriol. 174(17), 1992
PMID: 1355087
Acetate oxidation to CO in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle
Schauder R, Eikmanns B, Thauer RK, Widdel F, Fuchs G., 1986
Oxidative and reductive acetyl-CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. 2. Demonstration of the enzymes of the pathway and comparison of CO dehydrogenase
Schauder R, Preuß A, Jetten M, Fuchs G., 1989
Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H(2)-based ithoautotrophy and anaerobiosis.
Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich B, Gottschalk G., J. Mol. Biol. 332(2), 2003
PMID: 12948488
The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features.
Seedorf H, Fricke WF, Veith B, Bruggemann H, Liesegang H, Strittmatter A, Miethke M, Buckel W, Hinderberger J, Li F, Hagemeier C, Thauer RK, Gottschalk G., Proc. Natl. Acad. Sci. U.S.A. 105(6), 2008
PMID: 18218779
The Staden sequence analysis package.
Staden R., Mol. Biotechnol. 5(3), 1996
PMID: 8837029
The Staden package, 1998.
Staden R, Beal KF, Bonfield JK., Methods Mol. Biol. 132(), 2000
PMID: 10547834

Staron A, Sofia HJ, Liesegang H, Mascher T., 0
Physiological role of the F420-non-reducing hydrogenase (Mvh) from Methanothermobacter marburgensis.
Stojanowic A, Mander GJ, Duin EC, Hedderich R., Arch. Microbiol. 180(3), 2003
PMID: 12856108
PAS domains: internal sensors of oxygen, redox potential, and light.
Taylor BL, Zhulin IB., Microbiol. Mol. Biol. Rev. 63(2), 1999
PMID: 10357859
YACOP: Enhanced gene prediction obtained by a combination of existing methods.
Tech M, Merkl R., In Silico Biol. (Gedrukt) 3(4), 2003
PMID: 14965344
Sulfate-reducing bacteria and their activities in cyanobacterial mats of solar lake (Sinai, Egypt).
Teske A, Ramsing NB, Habicht K, Fukui M, Kuver J, Jorgensen BB, Cohen Y., Appl. Environ. Microbiol. 64(8), 1998
PMID: 9687455
Methanogenic archaea: ecologically relevant differences in energy conservation.
Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R., Nat. Rev. Microbiol. 6(8), 2008
PMID: 18587410
A membrane-bound cytochrome c3: a type II cytochrome c3 from Desulfovibrio vulgaris Hildenborough.
Valente FM, Saraiva LM, LeGall J, Xavier AV, Teixeira M, Pereira IA., Chembiochem 2(12), 2001
PMID: 11948878
Cellular levels of factor 390 and methanogenic enzymes during growth of Methanobacterium thermoautotrophicum deltaH.
Vermeij P, Pennings JL, Maassen SM, Keltjens JT, Vogels GD., J. Bacteriol. 179(21), 1997
PMID: 9352911
Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough.
Voordouw G., J. Bacteriol. 184(21), 2002
PMID: 12374824
Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models.
Waack S, Keller O, Asper R, Brodag T, Damm C, Fricke WF, Surovcik K, Meinicke P, Merkl R., BMC Bioinformatics 7(), 2006
PMID: 16542435
Microbiology and ecology of sulfate-reducing bacteria
Widdel F., 1988
Gram-negative mesophilic sulfate-reducing bacteria
Widdel F, Bak F., 1992
PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox.
Zhulin IB, Taylor BL, Dixon R., Trends Biochem. Sci. 22(9), 1997
PMID: 9301332
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19187283
PubMed | Europe PMC

Suchen in

Google Scholar