Prevalence of pSmeSM11a-like plasmids in indigenous Sinorhizobium meliloti strains isolated in the course of a field release experiment with genetically modified S-meliloti strains

Kuhn S, Stiens M, Pühler A, Schlüter A (2008)
FEMS MICROBIOLOGY ECOLOGY 63(1): 118-131.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kuhn, Stefanie; Stiens, Michael; Pühler, AlfredUniBi ; Schlüter, AndreasUniBi
Abstract / Bemerkung
Plasmid pSmeSM11a, residing in the indigenous Sinorhizobium meliloti strain SM11 originating from a field in Strassmoos (Bavaria, Germany), was analysed previously at the genomic level. Thirty-seven indigenous S. meliloti strains, originating from two different locations in Germany, were screened for genes identified previously on pSmeSM11a. Seven of these strains harbour accessory plasmids that are very similar to pSmeSM11a. The identified pSmeSM11a-like plasmids are c. 130-150 kb in size and possess nearly identical restriction profiles. Up to 30 genes identified previously on pSmeSM11a could be detected on these plasmids by hybridisation experiments, e.g., the nodulation genes nodP and nodQ, the ethylene level modulation gene acdS and the taurine metabolism gene tauD. A few pSmeSM11a genes were also detected on other plasmids. The reference plasmid pSmeSM11a contains a region that is similar to a segment of S. meliloti strain Rm1021 pSymA. Regions with similarity to pSymA were also detected on the aforementioned seven pSmeSM11a-like plasmids. The specifications of these regions are nearly identical to the one on pSmeSM11a and differ from Rm1021 pSymA as determined by nucleotide sequence analysis. Two further plasmids similar to pSmeSM11a completely lack the pSymA-region. Those strains carrying accessory plasmids that contain the acdS gene encoding 1-aminocyclopropane-1-carboxylate deaminase are able to grow on 1-aminocyclopropane-1-carboxylate as the sole source of nitrogen, demonstrating functionality of the acdS gene product. About 36% of the analysed plasmids, including three pSmeSM11a-like plasmids, could be transferred to another S. meliloti recipient strain, allowing for their dissemination in S. meliloti populations.
Stichworte
nitrogen fixation; ethylene metabolism; 1-aminocyclopropane-1-carboxylate deaminase; plasmid mobilisation; IS elements; nodulation
Erscheinungsjahr
2008
Zeitschriftentitel
FEMS MICROBIOLOGY ECOLOGY
Band
63
Ausgabe
1
Seite(n)
118-131
ISSN
0168-6496
Page URI
https://pub.uni-bielefeld.de/record/1631126

Zitieren

Kuhn S, Stiens M, Pühler A, Schlüter A. Prevalence of pSmeSM11a-like plasmids in indigenous Sinorhizobium meliloti strains isolated in the course of a field release experiment with genetically modified S-meliloti strains. FEMS MICROBIOLOGY ECOLOGY. 2008;63(1):118-131.
Kuhn, S., Stiens, M., Pühler, A., & Schlüter, A. (2008). Prevalence of pSmeSM11a-like plasmids in indigenous Sinorhizobium meliloti strains isolated in the course of a field release experiment with genetically modified S-meliloti strains. FEMS MICROBIOLOGY ECOLOGY, 63(1), 118-131. https://doi.org/10.1111/j.1574-6941.2007.00399.x
Kuhn, Stefanie, Stiens, Michael, Pühler, Alfred, and Schlüter, Andreas. 2008. “Prevalence of pSmeSM11a-like plasmids in indigenous Sinorhizobium meliloti strains isolated in the course of a field release experiment with genetically modified S-meliloti strains”. FEMS MICROBIOLOGY ECOLOGY 63 (1): 118-131.
Kuhn, S., Stiens, M., Pühler, A., and Schlüter, A. (2008). Prevalence of pSmeSM11a-like plasmids in indigenous Sinorhizobium meliloti strains isolated in the course of a field release experiment with genetically modified S-meliloti strains. FEMS MICROBIOLOGY ECOLOGY 63, 118-131.
Kuhn, S., et al., 2008. Prevalence of pSmeSM11a-like plasmids in indigenous Sinorhizobium meliloti strains isolated in the course of a field release experiment with genetically modified S-meliloti strains. FEMS MICROBIOLOGY ECOLOGY, 63(1), p 118-131.
S. Kuhn, et al., “Prevalence of pSmeSM11a-like plasmids in indigenous Sinorhizobium meliloti strains isolated in the course of a field release experiment with genetically modified S-meliloti strains”, FEMS MICROBIOLOGY ECOLOGY, vol. 63, 2008, pp. 118-131.
Kuhn, S., Stiens, M., Pühler, A., Schlüter, A.: Prevalence of pSmeSM11a-like plasmids in indigenous Sinorhizobium meliloti strains isolated in the course of a field release experiment with genetically modified S-meliloti strains. FEMS MICROBIOLOGY ECOLOGY. 63, 118-131 (2008).
Kuhn, Stefanie, Stiens, Michael, Pühler, Alfred, and Schlüter, Andreas. “Prevalence of pSmeSM11a-like plasmids in indigenous Sinorhizobium meliloti strains isolated in the course of a field release experiment with genetically modified S-meliloti strains”. FEMS MICROBIOLOGY ECOLOGY 63.1 (2008): 118-131.

12 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Biogeography of a Novel Ensifer meliloti Clade Associated with the Australian Legume Trigonella suavissima.
Eardly B, Elia P, Brockwell J, Golemboski D, van Berkum P., Appl Environ Microbiol 83(10), 2017
PMID: 28283520
Recombination and horizontal transfer of nodulation and ACC deaminase (acdS) genes within Alpha- and Betaproteobacteria nodulating legumes of the Cape Fynbos biome.
Lemaire B, Van Cauwenberghe J, Chimphango S, Stirton C, Honnay O, Smets E, Muasya AM., FEMS Microbiol Ecol 91(11), 2015
PMID: 26433010
Plasmids foster diversification and adaptation of bacterial populations in soil.
Heuer H, Smalla K., FEMS Microbiol Rev 36(6), 2012
PMID: 22393901
Population genomics of the facultatively mutualistic bacteria Sinorhizobium meliloti and S. medicae.
Epstein B, Branca A, Mudge J, Bharti AK, Briskine R, Farmer AD, Sugawara M, Young ND, Sadowsky MJ, Tiffin P., PLoS Genet 8(8), 2012
PMID: 22876202
ACC deaminase genes are conserved among Mesorhizobium species able to nodulate the same host plant.
Nascimento FX, Brígido C, Glick BR, Oliveira S., FEMS Microbiol Lett 336(1), 2012
PMID: 22846039
Population genomics of Sinorhizobium medicae based on low-coverage sequencing of sympatric isolates.
Bailly X, Giuntini E, Sexton MC, Lower RP, Harrison PW, Kumar N, Young JP., ISME J 5(11), 2011
PMID: 21562597
1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan.
Duan J, Müller KM, Charles TC, Vesely S, Glick BR., Microb Ecol 57(3), 2009
PMID: 18548183
Comparative genomic hybridisation and ultrafast pyrosequencing revealed remarkable differences between the Sinorhizobium meliloti genomes of the model strain Rm1021 and the field isolate SM11.
Stiens M, Becker A, Bekel T, Gödde V, Goesmann A, Niehaus K, Schneiker-Bekel S, Selbitschka W, Weidner S, Schlüter A, Pühler A., J Biotechnol 136(1-2), 2008
PMID: 18562031
Conjugal properties of the Sinorhizobium meliloti plasmid mobilome.
Pistorio M, Giusti MA, Del Papa MF, Draghi WO, Lozano MJ, Tejerizo GT, Lagares A., FEMS Microbiol Ecol 65(3), 2008
PMID: 18537840

45 References

Daten bereitgestellt von Europe PubMed Central.

Utilization of carbon substrates, electrophoretic enzyme patterns, and symbiotic performance of plasmid-cured clover rhizobia.
Baldani JI, Weaver RW, Hynes MF, Eardly BD., Appl. Environ. Microbiol. 58(7), 1992
PMID: 16348739
Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid.
Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn ML, Kalman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Yeh KC, Davis RW, Federspiel NA, Long SR., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481432
Symbiotic gene probes hybridize to cryptic plasmids of indigenous Rhizobium meliloti
Barran, Can J Microbiol 34(), 1988
Different plasmids of Rhizobium leguminosarum bv. phaseoli are required for optimal symbiotic performance.
Brom S, Garcia de los Santos A, Stepkowsky T, Flores M, Davila G, Romero D, Palacios R., J. Bacteriol. 174(16), 1992
PMID: 1644746
Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021.
Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, Batut J, Boistard P, Becker A, Boutry M, Cadieu E, Dreano S, Gloux S, Godrie T, Goffeau A, Kahn D, Kiss E, Lelaure V, Masuy D, Pohl T, Portetelle D, Puhler A, Purnelle B, Ramsperger U, Renard C, Thebault P, Vandenbol M, Weidner S, Galibert F., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481430
Genetic regulation of biological nitrogen fixation
Dixon, Nature Rev Microbiol 2(), 2004
The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti.
Finan TM, Weidner S, Wong K, Buhrmester J, Chain P, Vorholter FJ, Hernandez-Lucas I, Becker A, Cowie A, Gouzy J, Golding B, Puhler A., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481431
The composite genome of the legume symbiont Sinorhizobium meliloti.
Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J., Science 293(5530), 2001
PMID: 11474104
Rhizobium plasmids in bacteria-legume interactions.
Garcia-de Los Santos A, Brom S, Romero D., World J. Microbiol. Biotechnol. 12(2), 1996
PMID: 24415159
The partitioned Rhizobium etli genome
González, genetic and metabolic redundancy in seven interacting replicons 103(), 2006
Functional redundancy of genes for sulphate activation enzymes in Rhizobium sp. BR816.
Laeremans T, Coolsaet N, Verreth C, Snoeck C, Hellings N, Vanderleyden J, Martinez-Romero E., Microbiology (Reading, Engl.) 143 ( Pt 12)(), 1997
PMID: 9421916
Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids.
Martinez E, Palacios R, Sanchez F., J. Bacteriol. 169(6), 1987
PMID: 3584072
Plasmids in rhizobia
Mercado-Blanco, the role of nonsymbiotic plasmids 9(), 1996
A Legume Ethylene-Insensitive Mutant Hyperinfected by Its Rhizobial Symbiont
Penmetsa RV, Cook DR., Science 275(5299), 1997
PMID: 8999796
Rhizobium tropici nodulation factor sulfation is limited by the quantity of activated form of sulfate.
Poupot R, Martinez-Romero E, Maillet F, Prome JC., FEBS Lett. 368(3), 1995
PMID: 7635216
Diversity of Sinorhizobium meliloti from the Central Asian Alfalfa Gene Center.
Roumiantseva ML, Andronov EE, Sharypova LA, Dammann-Kalinowski T, Keller M, Young JP, Simarov BV., Appl. Environ. Microbiol. 68(9), 2002
PMID: 12200335
Characterization of recA genes and recA mutants of Rhizobium meliloti and Rhizobium leguminosarum biovar viciae.
Selbitschka W, Arnold W, Priefer UB, Rottschafer T, Schmidt M, Simon R, Puhler A., Mol. Gen. Genet. 229(1), 1991
PMID: 1896024
A biological containment system for Rhizobium meliloti based on the use of recombination-deficient (recA-) strains.
Selbitschka W, Dresing U, Hagen M, Niemann S, Puhler A., FEMS Microbiol. Ecol. 16(3), 1995
PMID: IND20456986
Long-term field release of bioluminescent Sinorhizobium meliloti strains to assess the influence of a recA mutation on the strains' survival.
Selbitschka W, Keller M, Miethling-Graff R, Dresing U, Schwieger F, Krahn I, Homann I, Dammann-Kalinowski T, Puhler A, Tebbe CC., Microb. Ecol. 52(3), 2006
PMID: 16924432
A broad host range mobilisation system for in vivo genetic-engineering – transposon mutagenesis in Gram-negative bacteria
Simon, Bio/Technology 1(), 1983
Plasmid vectors for the genetic analysis and manipulation of rhizobia and other gram-negative bacteria.
Simon R, O'Connell M, Labes M, Puhler A., Meth. Enzymol. 118(), 1986
PMID: 3005803
Nucleotide sequence and characterization of Rhizobium meliloti nodulation competitiveness genes nfe.
Soto MJ, Zorzano A, Mercado-Blanco J, Lepek V, Olivares J, Toro N., J. Mol. Biol. 229(2), 1993
PMID: 8429568
Root nodulation and infection factors produced by rhizobial bacteria.
Spaink HP., Annu. Rev. Microbiol. 54(), 2000
PMID: 11018130
The CLUSTAL_X windows interface
Thompson, flexible strategies for multiple sequence alignment aided by quality analysis tools 25(), 1997
Horizontal gene transfer in the phytosphere
Van, New Phytologist 157(), 2003
Symbiotic characteristics and selection of autochthonous strains of Sinorhizobium meliloti populations in different soils.
Velazquez E, Mateos PF, Velasco N, Santos F, Burgos PA, Villadas P, Toro N, Martinez-Molina E., Soil Biol. Biochem. 31(7), 1999
PMID: IND22026237
Histidine kinases and response regulator proteins in two-component signaling systems.
West AH, Stock AM., Trends Biochem. Sci. 26(6), 2001
PMID: 11406410
Changes in the Rhizobium meliloti genome and the ability to detect supercoiled plasmids during bacteroid development
Wheatcroft, Mol Plant Microbe Interact 3(), 1990
The genome of Rhizobium leguminosarum has recognizable core and accessory components.
Young JP, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson AR, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J., Genome Biol. 7(4), 2006
PMID: 16640791
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18034835
PubMed | Europe PMC

Suchen in

Google Scholar