A method for linking computed image features to histological semantics in neuropathology

Lessmann B, Nattkemper TW, Hans VH, Degenhard A (2007)
Journal of Biomedical Informatics 40(6): 631-641.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Lessmann, B.; Nattkemper, Tim WilhelmUniBi ; Hans, V. H.; Degenhard, A.
Abstract / Bemerkung
In medical image analysis the image content is often represented by features computed from the pixel matrix in order to support the development of improved clinical diagnosis systems. These features need to be interpreted and understood at a clinical level of understanding Many features are of abstract nature, as for instance features derived from a wavelet transform. The interpretation and analysis of such features are difficult. This lack of coincidence between computed features and their meaning for a user in a given situation is commonly referred to as the semantic gap. In this work, we propose a method for feature analysis and interpretation based oil the simultaneous visualization of feature and image domain. Histopathological images of meningiomas WHO (World Health Organization) grade I are represented by features derived from color transforms and the Discrete Wavelet Transform. The wavelet-based feature space is then visualized and explored using unsupervised machine learning methods. We show how to analyze and select features according to their relevance for the description of clinically relevant characteristics. (C) 2007 Elsevier Inc. All rights reserved.
Stichworte
Self Organizing Map; Discrete Wavelet Transform; feature selection; histopathology; image analysis
Erscheinungsjahr
2007
Zeitschriftentitel
Journal of Biomedical Informatics
Band
40
Ausgabe
6
Seite(n)
631-641
ISSN
1532-0464
Page URI
https://pub.uni-bielefeld.de/record/1630749

Zitieren

Lessmann B, Nattkemper TW, Hans VH, Degenhard A. A method for linking computed image features to histological semantics in neuropathology. Journal of Biomedical Informatics. 2007;40(6):631-641.
Lessmann, B., Nattkemper, T. W., Hans, V. H., & Degenhard, A. (2007). A method for linking computed image features to histological semantics in neuropathology. Journal of Biomedical Informatics, 40(6), 631-641. https://doi.org/10.1016/j.jbi.2007.06.007
Lessmann, B., Nattkemper, Tim Wilhelm, Hans, V. H., and Degenhard, A. 2007. “A method for linking computed image features to histological semantics in neuropathology”. Journal of Biomedical Informatics 40 (6): 631-641.
Lessmann, B., Nattkemper, T. W., Hans, V. H., and Degenhard, A. (2007). A method for linking computed image features to histological semantics in neuropathology. Journal of Biomedical Informatics 40, 631-641.
Lessmann, B., et al., 2007. A method for linking computed image features to histological semantics in neuropathology. Journal of Biomedical Informatics, 40(6), p 631-641.
B. Lessmann, et al., “A method for linking computed image features to histological semantics in neuropathology”, Journal of Biomedical Informatics, vol. 40, 2007, pp. 631-641.
Lessmann, B., Nattkemper, T.W., Hans, V.H., Degenhard, A.: A method for linking computed image features to histological semantics in neuropathology. Journal of Biomedical Informatics. 40, 631-641 (2007).
Lessmann, B., Nattkemper, Tim Wilhelm, Hans, V. H., and Degenhard, A. “A method for linking computed image features to histological semantics in neuropathology”. Journal of Biomedical Informatics 40.6 (2007): 631-641.

20 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Effect of radiation dose reduction on texture measures of trabecular bone microstructure: an in vitro study.
Mookiah MRK, Baum T, Mei K, Kopp FK, Kaissis G, Foehr P, Noel PB, Kirschke JS, Subburaj K., J Bone Miner Metab 36(3), 2018
PMID: 28389933
CD30 cell graphs of Hodgkin lymphoma are not scale-free--an image analysis approach.
Schäfer H, Schäfer T, Ackermann J, Dichter N, Döring C, Hartmann S, Hansmann ML, Koch I., Bioinformatics 32(1), 2016
PMID: 26363177
Automated prostate tissue referencing for cancer detection and diagnosis.
Kwak JT, Hewitt SM, Kajdacsy-Balla AA, Sinha S, Bhargava R., BMC Bioinformatics 17(1), 2016
PMID: 27247129
Influence of Texture and Colour in Breast TMA Classification.
Fernández-Carrobles MM, Bueno G, Déniz O, Salido J, García-Rojo M, González-López L., PLoS One 10(10), 2015
PMID: 26513238
A new texture and shape based technique for improving meningioma classification.
Fatima K, Arooj A, Majeed H., Microsc Res Tech 77(11), 2014
PMID: 25060536
Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis.
Held C, Nattkemper T, Palmisano R, Wittenberg T., J Pathol Inform 4(suppl), 2013
PMID: 23766941
Pathology imaging informatics for quantitative analysis of whole-slide images.
Kothari S, Phan JH, Stokes TH, Wang MD., J Am Med Inform Assoc 20(6), 2013
PMID: 23959844
Breast cancer characterization based on image classification of tissue sections visualized under low magnification.
Loukas C, Kostopoulos S, Tanoglidi A, Glotsos D, Sfikas C, Cavouras D., Comput Math Methods Med 2013(), 2013
PMID: 24069067
Computer-aided diagnosis of skin lesions using conventional digital photography: a reliability and feasibility study.
Chang WY, Huang A, Yang CY, Lee CH, Chen YC, Wu TY, Chen GS., PLoS One 8(11), 2013
PMID: 24223698
Biological Interpretation of Morphological Patterns in Histopathological Whole-Slide Images.
Kothari S, Phan JH, Osunkoya AO, Wang MD., ACM BCB 2012(), 2012
PMID: 29568817
A supervised visual model for finding regions of interest in basal cell carcinoma images.
Gutiérrez R, Gómez F, Roa-Peña L, Romero E., Diagn Pathol 6(), 2011
PMID: 21447178
Learning regions of interest from low level maps in virtual microscopy.
Romo D, Romero E, González F., Diagn Pathol 6 Suppl 1(), 2011
PMID: 21489193
Automated diagnosis of oral cancer using higher order spectra features and local binary pattern: a comparative study.
Krishnan MM, Acharya UR, Chakraborty C, Ray AK., Technol Cancer Res Treat 10(5), 2011
PMID: 21895029
Intelligent data analysis in biomedicine.
Holmes JH, Peek N., J Biomed Inform 40(6), 2007
PMID: 17959422

29 References

Daten bereitgestellt von Europe PubMed Central.

Statistical pattern recognition: a review
Jain, IEEE Trans Patt Anal Machine Intell 22(1), 2000
Content-based image retrieval systems at the end of the early years
Smeulders, IEEE Trans Patt Anal Machine Intell 22(12), 2000

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
PicSOM—content-based image retrieval with self-organizing maps
Laaksonen, Patt Recogn Lett 22(), 2000

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Meningiomas
Louis, 2000
Intelligent decision support in pathomorphology.
Jelonek J, Krawiec K, Slowinski R, Szymas J., Pol J Pathol 50(2), 1999
PMID: 10481536

Hearn, 1997
Characterization of signals from multiscale edges
Mallat, IEEE Trans Patt Anal Machine Intell 14(), 1992
Ten lectures on wavelets
Daubechies, CBMS-NFS Series Appl Math SIAM (), 1991

Mallat, 1999

Stollnitz, 1996

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Wavelets as chromatin texture descriptors for the automated identification of neoplastic nuclei.
Van De Wouwer G, Weyn B, Scheunders P, Jacob W, Van Marck E, Van Dyck D., J Microsc 197(Pt 1), 2000
PMID: 10620145
Texture features for image retrieval
Manjunath, 2002
Filtering for texture classification: a comparative study
Randen, IEEE Transactions on Pattern Analysis and Machine Intelligence 21(4), 1999
Design and analysis of a content-based pathology image retrieval system.
Zheng L, Wetzel AW, Gilbertson J, Becich MJ., IEEE Trans Inf Technol Biomed 7(4), 2003
PMID: 15000351
Biorthogonal bases of compactly supported wavelets
Cohen, Comm Pure Appl Math 45(), 1992
The JPEG2000 still image coding system: an overview
Christopoulos, IEEE Trans on Consumer Electronics 46(), 2000
Texture analysis and classification with tree-structured wavelet transform.
Chang T, Kuo CJ., IEEE Trans Image Process 2(4), 1993
PMID: 18296228
Statistical texture characterization from discrete wavelet representations.
Van de Wouwer G, Scheunders P, Van Dyck D., IEEE Trans Image Process 8(4), 1999
PMID: 18262903
A texture analysis approach to corrosion image classification
Livens, Microscopy, Microanalysis, Microstructures 7(2), 1996

Kohonen, 1995
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 17698418
PubMed | Europe PMC

Suchen in

Google Scholar