Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli

Dusch N, Pühler A, Kalinowski J (1999)
Appl Environ Microbiol 65(4): 1530-1539.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
The Corynebacterium glutamicum panD gene was identified by functional complementation of an Escherichia coli panD mutant strain. Sequence analysis revealed that the coding region of panD comprises 411 bp and specifies a protein of 136 amino acid residues with a deduced molecular mass of 14.1 kDa. A defined C. glutamicum panD mutant completely lacked L-aspartate-alpha-decarboxylase activity and exhibited beta-alanine auxotrophy, The C. glutamicum panD (panD(C.g.)) as well as the E. coli panD (panD(E.c.)) genes were cloned into a bifunctional expression plasmid to allow gene analysis in C. glutamicum as well as in E. coli. The enhanced expression of panD(C.g.) in C. glutamicum resulted in the formation of two distinct proteins In sodium dodecyl sulfate-polyacrylamide gel electrophoresis, leading to the assumption that the panD(C.g.) gene product is proteolytically processed into two subunits, By increased expression of panD(C.g.) in C. glutamicum, the activity of L-aspartate-alpha-decarboxylase was 288-fold increased, whereas the panD(E.c.) gene resulted only in a 4-fold enhancement. The similar experiment performed in E. coli revealed that panD(C.g.) achieved a 41-fold increase and that panD(E.c.) achieved a 3-fold increase of enzyme activity. The effect of the panD(C.g.) and panD(E.c.) gene expression in E, coli was studied with a view to pantothenate accumulation. Only by expression of the panD(C.g.) gene was sufficient p-alanine produced to abolish its limiting effect on pantothenate production. In cultures expressing the panD(E.c.) gene, the maximal pantothenate production was still dependent on external beta-alanine supplementation. The enhanced expression of panD(C.g.) in E. coli yielded the highest amount of pantothenate in the culture medium, with a specific productivity of 140 ng of pantothenate mg (dry weight)(-1) h(-1).
Erscheinungsjahr
Zeitschriftentitel
Appl Environ Microbiol
Band
65
Ausgabe
4
Seite(n)
1530-1539
ISSN
PUB-ID

Zitieren

Dusch N, Pühler A, Kalinowski J. Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli. Appl Environ Microbiol. 1999;65(4):1530-1539.
Dusch, N., Pühler, A., & Kalinowski, J. (1999). Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli. Appl Environ Microbiol, 65(4), 1530-1539.
Dusch, N., Pühler, A., and Kalinowski, J. (1999). Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli. Appl Environ Microbiol 65, 1530-1539.
Dusch, N., Pühler, A., & Kalinowski, J., 1999. Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli. Appl Environ Microbiol, 65(4), p 1530-1539.
N. Dusch, A. Pühler, and J. Kalinowski, “Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli”, Appl Environ Microbiol, vol. 65, 1999, pp. 1530-1539.
Dusch, N., Pühler, A., Kalinowski, J.: Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli. Appl Environ Microbiol. 65, 1530-1539 (1999).
Dusch, N, Pühler, Alfred, and Kalinowski, Jörn. “Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli”. Appl Environ Microbiol 65.4 (1999): 1530-1539.

51 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery.
Baritugo KA, Kim HT, David Y, Choi JI, Hong SH, Jeong KJ, Choi JH, Joo JC, Park SJ., Appl Microbiol Biotechnol 102(9), 2018
PMID: 29557518
Click-chemistry approach to study mycoloylated proteins: Evidence for PorB and PorC porins mycoloylation in Corynebacterium glutamicum.
Issa H, Huc-Claustre E, Reddad T, Bonadé Bottino N, Tropis M, Houssin C, Daffé M, Bayan N, Dautin N., PLoS One 12(2), 2017
PMID: 28199365
Assembling of the Mycobacterium tuberculosis Cell Wall Core.
Grzegorzewicz AE, de Sousa-d'Auria C, McNeil MR, Huc-Claustre E, Jones V, Petit C, Angala SK, Zemanová J, Wang Q, Belardinelli JM, Gao Q, Ishizaki Y, Mikušová K, Brennan PJ, Ronning DR, Chami M, Houssin C, Jackson M., J Biol Chem 291(36), 2016
PMID: 27417139
Chassis organism from Corynebacterium glutamicum--a top-down approach to identify and delete irrelevant gene clusters.
Unthan S, Baumgart M, Radek A, Herbst M, Siebert D, Brühl N, Bartsch A, Bott M, Wiechert W, Marin K, Hans S, Krämer R, Seibold G, Frunzke J, Kalinowski J, Rückert C, Wendisch VF, Noack S., Biotechnol J 10(2), 2015
PMID: 25139579
Diaminopimelic Acid Amidation in Corynebacteriales: NEW INSIGHTS INTO THE ROLE OF LtsA IN PEPTIDOGLYCAN MODIFICATION.
Levefaudes M, Patin D, de Sousa-d'Auria C, Chami M, Blanot D, Hervé M, Arthur M, Houssin C, Mengin-Lecreulx D., J Biol Chem 290(21), 2015
PMID: 25847251
Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization.
Kang MK, Lee J, Um Y, Lee TS, Bott M, Park SJ, Woo HM., Appl Microbiol Biotechnol 98(13), 2014
PMID: 24706215
β-alanine biosynthesis in Methanocaldococcus jannaschii.
Wang Y, Xu H, White RH., J Bacteriol 196(15), 2014
PMID: 24891443
Biosynthesis of pinene from glucose using metabolically-engineered Corynebacterium glutamicum.
Kang MK, Eom JH, Kim Y, Um Y, Woo HM., Biotechnol Lett 36(10), 2014
PMID: 24930112
Induction and carbon catabolite repression of phenol degradation genes in Rhodococcus erythropolis and Rhodococcus jostii.
Szőköl J, Rucká L, Šimčíková M, Halada P, Nešvera J, Pátek M., Appl Microbiol Biotechnol 98(19), 2014
PMID: 24938209
Identification of a mycoloyl transferase selectively involved in O-acylation of polypeptides in Corynebacteriales.
Huc E, de Sousa-D'Auria C, de la Sierra-Gallay IL, Salmeron C, van Tilbeurgh H, Bayan N, Houssin C, Daffé M, Tropis M., J Bacteriol 195(18), 2013
PMID: 23852866
Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology.
Baumgart M, Unthan S, Rückert C, Sivalingam J, Grünberger A, Kalinowski J, Bott M, Noack S, Frunzke J., Appl Environ Microbiol 79(19), 2013
PMID: 23892752
A novel type of N-acetylglutamate synthase is involved in the first step of arginine biosynthesis in Corynebacterium glutamicum.
Petri K, Walter F, Persicke M, Rückert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24138314
Biochemical disclosure of the mycolate outer membrane of Corynebacterium glutamicum.
Marchand CH, Salmeron C, Bou Raad R, Méniche X, Chami M, Masi M, Blanot D, Daffé M, Tropis M, Huc E, Le Maréchal P, Decottignies P, Bayan N., J Bacteriol 194(3), 2012
PMID: 22123248
The ppm operon is essential for acylation and glycosylation of lipoproteins in Corynebacterium glutamicum.
Mohiman N, Argentini M, Batt SM, Cornu D, Masi M, Eggeling L, Besra G, Bayan N., PLoS One 7(9), 2012
PMID: 23029442
A deficiency in arabinogalactan biosynthesis affects Corynebacterium glutamicum mycolate outer membrane stability.
Bou Raad R, Méniche X, de Sousa-d'Auria C, Chami M, Salmeron C, Tropis M, Labarre C, Daffé M, Houssin C, Bayan N., J Bacteriol 192(11), 2010
PMID: 20363942
Regulation of ldh expression during biotin-limited growth of Corynebacterium glutamicum.
Dietrich C, Nato A, Bost B, Le Maréchal P, Guyonvarch A., Microbiology 155(pt 4), 2009
PMID: 19332837
Identification of a stress-induced factor of Corynebacterineae that is involved in the regulation of the outer membrane lipid composition.
Meniche X, Labarre C, de Sousa-d'Auria C, Huc E, Laval F, Tropis M, Bayan N, Portevin D, Guilhot C, Daffé M, Houssin C., J Bacteriol 191(23), 2009
PMID: 19801408
Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure.
Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H., Proc Natl Acad Sci U S A 105(10), 2008
PMID: 18316738
Partial redundancy in the synthesis of the D-arabinose incorporated in the cell wall arabinan of Corynebacterineae.
Meniche X, de Sousa-d'Auria C, Van-der-Rest B, Bhamidi S, Huc E, Huang H, De Paepe D, Tropis M, McNeil M, Daffé M, Houssin C., Microbiology 154(pt 8), 2008
PMID: 18667564
Biosynthesis of Pantothenic Acid and Coenzyme A.
Leonardi R, Jackowski S., EcoSal Plus 2(2), 2007
PMID: 26443589
Roles of vitamins B5, B8, B9, B12 and molybdenum cofactor at cellular and organismal levels.
Rébeillé F, Ravanel S, Marquet A, Mendel RR, Webb ME, Smith AG, Warren MJ., Nat Prod Rep 24(5), 2007
PMID: 17898891
Elucidating biosynthetic pathways for vitamins and cofactors.
Webb ME, Marquet A, Mendel RR, Rébeillé F, Smith AG., Nat Prod Rep 24(5), 2007
PMID: 17898894
Pantothenate biosynthesis in higher plants: advances and challenges.
Chakauya Ereck, Coxon KatyM, Whitney HeatherM, Ashurst JenniferL, Abell Chris, Smith AlisonG., Physiol Plant 126(3), 2006
PMID: IND43783143
Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling.
Hüser AT, Chassagnole C, Lindley ND, Merkamm M, Guyonvarch A, Elisáková V, Pátek M, Kalinowski J, Brune I, Pühler A, Tauch A., Appl Environ Microbiol 71(6), 2005
PMID: 15933028
A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms.
Portevin D, De Sousa-D'Auria C, Houssin C, Grimaldi C, Chami M, Daffé M, Guilhot C., Proc Natl Acad Sci U S A 101(1), 2004
PMID: 14695899
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A., J Biotechnol 104(1-3), 2003
PMID: 12948626
Ketopantoate reductase activity is only encoded by ilvC in Corynebacterium glutamicum.
Merkamm M, Chassagnole C, Lindley ND, Guyonvarch A., J Biotechnol 104(1-3), 2003
PMID: 12948643
Carbon flux analysis in a pantothenate overproducing Corynebacterium glutamicum strain.
Chassagnole C, Létisse F, Diano A, Lindley ND., Mol Biol Rep 29(1-2), 2002
PMID: 12241042

41 References

Daten bereitgestellt von Europe PubMed Central.

Metabolism of coenzyme A
Abiko Y., 1975
Crystal structure of aspartate decarboxylase at 2.2 A resolution provides evidence for an ester in protein self-processing.
Albert A, Dhanaraj V, Genschel U, Khan G, Ramjee MK, Pulido R, Sibanda BL, von Delft F, Witty M, Blundell TL, Smith AG, Abell C., Nat. Struct. Biol. 5(4), 1998
PMID: 9546220
Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
Optimization of serum-free fermentation processes for antibody production.
Buntemeyer H, Lutkemeyer D, Lehmann J., Cytotechnology 5(1), 1991
PMID: 1367052
Beta-alanine synthesis in Escherichia coli.
Cronan JE Jr., J. Bacteriol. 141(3), 1980
PMID: 6767707

AUTHOR UNKNOWN, 0
Bacto-pantothenate assay medium
AUTHOR UNKNOWN, 1984
Identification of protein coding regions by database similarity search.
Gish W, States DJ., Nat. Genet. 3(3), 1993
PMID: 8485583
Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants.
Grant SG, Jessee J, Bloom FR, Hanahan D., Proc. Natl. Acad. Sci. U.S.A. 87(12), 1990
PMID: 2162051
Compilation and analysis of Escherichia coli promoter DNA sequences.
Hawley DK, McClure WR., Nucleic Acids Res. 11(8), 1983
PMID: 6344016
Electrotransformation of Brevibacterium lactofermentum and Corynebacterium glutamicum: growth in Tween 80 increases transformation frequencies
Haynes J, Britz M., 1989
Biosynthesis of pantothenic acid and coenzyme A
Jackowski S., 1996
SCS110: dam, dcm, endA Epicurian coli® competent cells
Jerpseth B, Kretz B., 1993

AUTHOR UNKNOWN, 0
Characterization and sequence of the Escherichia coli panBCD gene cluster.
Merkel WK, Nichols BP., FEMS Microbiol. Lett. 143(2-3), 1996
PMID: 8837478
Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif.
Patek M, Eikmanns BJ, Patek J, Sahm H., Microbiology (Reading, Engl.) 142 ( Pt 5)(), 1996
PMID: 8704969

Sambrook J, Fritsch E, Maniatis T., 1996
DNA sequencing with chain-terminating inhibitors.
Sanger F, Nicklen S, Coulson AR., Proc. Natl. Acad. Sci. U.S.A. 74(12), 1977
PMID: 271968
High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various gram-positive coryneform bacteria.
Schafer A, Kalinowski J, Simon R, Seep-Feldhaus AH, Puhler A., J. Bacteriol. 172(3), 1990
PMID: 2106514
A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria
Simon R, Priefer U, Pühler A., 1983
Dihydrouracil as a growth factor for mutant strains of Escherichia coli.
SLOTNICK IJ, WEINFELD H., J. Bacteriol. 74(2), 1957
PMID: 13475206

Smith R., 1988
The current status and portability of our sequence handling software.
Staden R., Nucleic Acids Res. 14(1), 1986
PMID: 3511446
Use of synthetic oligodeoxyribonucleotides for the isolation of specific cloned DNA sequences
Suggs S, Hirose T, Miyake T, Kawashima E, Johnson M, Itakura K, Wallace R., 1981
Corynebacterium glutamicum DNA is subjected to methylation-restriction in Escherichia coli.
Tauch A, Kirchner O, Wehmeier L, Kalinowski J, Puhler A., FEMS Microbiol. Lett. 123(3), 1994
PMID: 7988915
Acyl group transfer
Vagelos P., 1973
Pyruvoyl-dependent enzymes.
van Poelje PD, Snell EE., Annu. Rev. Biochem. 59(), 1990
PMID: 2197977
Acetylornithinase of Escherichia coli: partial purification and some properties.
VOGEL HJ, BONNER DM., J. Biol. Chem. 218(1), 1956
PMID: 13278318
A simplified protocol for fast plasmid DNA sequencing.
Zimmermann J, Voss H, Schwager C, Stegemann J, Erfle H, Stucky K, Kristensen T, Ansorge W., Nucleic Acids Res. 18(4), 1990
PMID: 2315028

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 10103247
PubMed | Europe PMC

Suchen in

Google Scholar