A systematic approach to dynamic programming in bioinformatics
Giegerich R (2000)
BIOINFORMATICS 16(8): 665-677.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
Motivation: Dynamic programming is probably the most popular programming method in bioinformatics. Sequence comparison gene recognition, RNA structure prediction and hundreds of other problems are solved by ever new variants of dynamic programming. Currently, the development of a successful dynamic programming algorithm is a matter of experience, talent and luck. The typical matrix recurrence relations that make up a dynamic programming algorithm are intricate to construct, and difficult to implement reliably No general problem independent guidance is available. Results: This article introduces a systematic method for constructing dynamic programming solutions to problems in biosequence analysis. By a conceptual splitting of the algorithm into a recognition and an evaluation phase, algorithm development is simplified considerably, and correct recurrences can be derived systematically. Without additional effort, the method produces an early, executable prototype expressed in a functional programming language. The method is quite generally applicable, and, while programming effort decreases, no overhead in terms of ultimate program efficiency is incurred.
Erscheinungsjahr
2000
Zeitschriftentitel
BIOINFORMATICS
Band
16
Ausgabe
8
Seite(n)
665-677
ISSN
1367-4803
eISSN
1460-2059
Page URI
https://pub.uni-bielefeld.de/record/1618574
Zitieren
Giegerich R. A systematic approach to dynamic programming in bioinformatics. BIOINFORMATICS. 2000;16(8):665-677.
Giegerich, R. (2000). A systematic approach to dynamic programming in bioinformatics. BIOINFORMATICS, 16(8), 665-677. https://doi.org/10.1093/bioinformatics/16.8.665
Giegerich, Robert. 2000. “A systematic approach to dynamic programming in bioinformatics”. BIOINFORMATICS 16 (8): 665-677.
Giegerich, R. (2000). A systematic approach to dynamic programming in bioinformatics. BIOINFORMATICS 16, 665-677.
Giegerich, R., 2000. A systematic approach to dynamic programming in bioinformatics. BIOINFORMATICS, 16(8), p 665-677.
R. Giegerich, “A systematic approach to dynamic programming in bioinformatics”, BIOINFORMATICS, vol. 16, 2000, pp. 665-677.
Giegerich, R.: A systematic approach to dynamic programming in bioinformatics. BIOINFORMATICS. 16, 665-677 (2000).
Giegerich, Robert. “A systematic approach to dynamic programming in bioinformatics”. BIOINFORMATICS 16.8 (2000): 665-677.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
12 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Graph-based optimization of epitope coverage for vaccine antigen design.
Theiler J, Korber B., Stat Med 37(2), 2018
PMID: 28132437
Theiler J, Korber B., Stat Med 37(2), 2018
PMID: 28132437
A Sequential Segment Based Alpha-Helical Transmembrane Protein Alignment Method.
Wang H, Wang J, Zhang L, Sun P, Du N, Li Y., Int J Biol Sci 14(8), 2018
PMID: 29989071
Wang H, Wang J, Zhang L, Sun P, Du N, Li Y., Int J Biol Sci 14(8), 2018
PMID: 29989071
Epigraph: A Vaccine Design Tool Applied to an HIV Therapeutic Vaccine and a Pan-Filovirus Vaccine.
Theiler J, Yoon H, Yusim K, Picker LJ, Fruh K, Korber B., Sci Rep 6(), 2016
PMID: 27703185
Theiler J, Yoon H, Yusim K, Picker LJ, Fruh K, Korber B., Sci Rep 6(), 2016
PMID: 27703185
Transmembrane protein alignment and fold recognition based on predicted topology.
Wang H, He Z, Zhang C, Zhang L, Xu D., PLoS One 8(7), 2013
PMID: 23894534
Wang H, He Z, Zhang C, Zhang L, Xu D., PLoS One 8(7), 2013
PMID: 23894534
DOPA: GPU-based protein alignment using database and memory access optimizations.
Hasan L, Kentie M, Al-Ars Z., BMC Res Notes 4(), 2011
PMID: 21798061
Hasan L, Kentie M, Al-Ars Z., BMC Res Notes 4(), 2011
PMID: 21798061
Dynamic programming for single nucleotide polymorphism ID identification in systematic association studies.
Yang CH, Chuang LY, Cheng YH, Wen CH, Chang HW., Kaohsiung J Med Sci 25(4), 2009
PMID: 19502133
Yang CH, Chuang LY, Cheng YH, Wen CH, Chang HW., Kaohsiung J Med Sci 25(4), 2009
PMID: 19502133
160-fold acceleration of the Smith-Waterman algorithm using a field programmable gate array (FPGA).
Li IT, Shum W, Truong K., BMC Bioinformatics 8(), 2007
PMID: 17555593
Li IT, Shum W, Truong K., BMC Bioinformatics 8(), 2007
PMID: 17555593
Design optimization methods for genomic DNA tiling arrays.
Bertone P, Trifonov V, Rozowsky JS, Schubert F, Emanuelsson O, Karro J, Kao MY, Snyder M, Gerstein M., Genome Res 16(2), 2006
PMID: 16365382
Bertone P, Trifonov V, Rozowsky JS, Schubert F, Emanuelsson O, Karro J, Kao MY, Snyder M, Gerstein M., Genome Res 16(2), 2006
PMID: 16365382
Label-free quantitative proteomics using large peptide data sets generated by nanoflow liquid chromatography and mass spectrometry.
Ono M, Shitashige M, Honda K, Isobe T, Kuwabara H, Matsuzuki H, Hirohashi S, Yamada T., Mol Cell Proteomics 5(7), 2006
PMID: 16552026
Ono M, Shitashige M, Honda K, Isobe T, Kuwabara H, Matsuzuki H, Hirohashi S, Yamada T., Mol Cell Proteomics 5(7), 2006
PMID: 16552026
Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics.
Reeder J, Giegerich R., BMC Bioinformatics 5(), 2004
PMID: 15294028
Reeder J, Giegerich R., BMC Bioinformatics 5(), 2004
PMID: 15294028
Fast and effective prediction of microRNA/target duplexes.
Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R., RNA 10(10), 2004
PMID: 15383676
Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R., RNA 10(10), 2004
PMID: 15383676
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 11099253
PubMed | Europe PMC
Suchen in