Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1

Tauch A, Kirchner O, Löffler B, Götker S, Pühler A, Kalinowski J (2002)
CURRENT MICROBIOLOGY 45(5): 362-367.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Tauch, AndreasUniBi; Kirchner, O; Löffler, B; Götker, S; Pühler, AlfredUniBi ; Kalinowski, JörnUniBi
Abstract / Bemerkung
Efficient transformation of the human pathogen Corynebacterium diphtheriae was achieved with novel cloning vectors consisting of a mini-replicon from the cryptic C. glutamicum plasmid pGA1 as well as of the aph(3')-IIa or tetA(Z) antibiotic resistance genes. Plasmid-containing transformants of C. diphtheriae were recovered at frequencies ranging from 1.3 x 10(5) to 4.8 x 10(6) colony forming units (cfu)/mug of plasmid DNA. Vector DNA was directly transferred from Escherichia coli into C. diphtheriae with frequencies up to 5.6 x 10(5) cfu/mug of plasmid DNA. On the basis of the pGA1 mini-replicon, an expression vector system was established for C. diphtheriae by means of the P-tac promoter and the green fluorescent reporter protein. In addition, other commonly used vector systems from C. glutamicum, including the pBL1 and pHM1519 replicons, and the sacB conditionally lethal selection market from Bacillus subtilis, were shown to be functional in C. diphtheriae. Thus, the ability to apply the standard methods of C. glutamicum recombinant DNA technology will greatly facilitate the functional analysis of the recently completed C. diphtheriae genome sequence.
Erscheinungsjahr
2002
Zeitschriftentitel
CURRENT MICROBIOLOGY
Band
45
Ausgabe
5
Seite(n)
362-367
ISSN
0343-8651
eISSN
1432-0991
Page URI
https://pub.uni-bielefeld.de/record/1613598

Zitieren

Tauch A, Kirchner O, Löffler B, Götker S, Pühler A, Kalinowski J. Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. CURRENT MICROBIOLOGY. 2002;45(5):362-367.
Tauch, A., Kirchner, O., Löffler, B., Götker, S., Pühler, A., & Kalinowski, J. (2002). Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. CURRENT MICROBIOLOGY, 45(5), 362-367. https://doi.org/10.1007/s00284-002-3728-3
Tauch, Andreas, Kirchner, O, Löffler, B, Götker, S, Pühler, Alfred, and Kalinowski, Jörn. 2002. “Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1”. CURRENT MICROBIOLOGY 45 (5): 362-367.
Tauch, A., Kirchner, O., Löffler, B., Götker, S., Pühler, A., and Kalinowski, J. (2002). Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. CURRENT MICROBIOLOGY 45, 362-367.
Tauch, A., et al., 2002. Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. CURRENT MICROBIOLOGY, 45(5), p 362-367.
A. Tauch, et al., “Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1”, CURRENT MICROBIOLOGY, vol. 45, 2002, pp. 362-367.
Tauch, A., Kirchner, O., Löffler, B., Götker, S., Pühler, A., Kalinowski, J.: Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. CURRENT MICROBIOLOGY. 45, 362-367 (2002).
Tauch, Andreas, Kirchner, O, Löffler, B, Götker, S, Pühler, Alfred, and Kalinowski, Jörn. “Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1”. CURRENT MICROBIOLOGY 45.5 (2002): 362-367.

145 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Optimizing a CRISPR-Cpf1-based genome engineering system for Corynebacterium glutamicum.
Zhang J, Yang F, Yang Y, Jiang Y, Huo YX., Microb Cell Fact 18(1), 2019
PMID: 30909908
Modular systems metabolic engineering enables balancing of relevant pathways for l-histidine production with Corynebacterium glutamicum.
Schwentner A, Feith A, Münch E, Stiefelmaier J, Lauer I, Favilli L, Massner C, Öhrlein J, Grund B, Hüser A, Takors R, Blombach B., Biotechnol Biofuels 12(), 2019
PMID: 30962820
An update of the suicide plasmid-mediated genome editing system in Corynebacterium glutamicum.
Wang T, Li Y, Li J, Zhang D, Cai N, Zhao G, Ma H, Shang C, Ma Q, Xu Q, Chen N., Microb Biotechnol 12(5), 2019
PMID: 31180185
Synthetic engineering of Corynebacterium crenatum to selectively produce acetoin or 2,3-butanediol by one step bioconversion method.
Zhang X, Han R, Bao T, Zhao X, Li X, Zhu M, Yang T, Xu M, Shao M, Zhao Y, Rao Z., Microb Cell Fact 18(1), 2019
PMID: 31387595
Promoter library-based module combination (PLMC) technology for optimization of threonine biosynthesis in Corynebacterium glutamicum.
Wei L, Xu N, Wang Y, Zhou W, Han G, Ma Y, Liu J., Appl Microbiol Biotechnol 102(9), 2018
PMID: 29564525
A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.
Wang B, Hu Q, Zhang Y, Shi R, Chai X, Liu Z, Shang X, Zhang Y, Wen T., Microb Cell Fact 17(1), 2018
PMID: 29685154
Improved L-ornithine production in Corynebacterium crenatum by introducing an artificial linear transacetylation pathway.
Shu Q, Xu M, Li J, Yang T, Zhang X, Xu Z, Rao Z., J Ind Microbiol Biotechnol 45(6), 2018
PMID: 29728854
Deciphering the Adaptation of Corynebacterium glutamicum in Transition from Aerobiosis via Microaerobiosis to Anaerobiosis.
Lange J, Münch E, Müller J, Busche T, Kalinowski J, Takors R, Blombach B., Genes (Basel) 9(6), 2018
PMID: 29899275
Production of the compatible solute α-D-glucosylglycerol by metabolically engineered Corynebacterium glutamicum.
Roenneke B, Rosenfeldt N, Derya SM, Novak JF, Marin K, Krämer R, Seibold GM., Microb Cell Fact 17(1), 2018
PMID: 29908566
Tetramethylpyrazine-Inducible Promoter Region from Rhodococcus jostii TMP1.
Stanislauskienė R, Kutanovas S, Kalinienė L, Bratchikov M, Meškys R., Molecules 23(7), 2018
PMID: 29941849
Utilization of rare codon-rich markers for screening amino acid overproducers.
Zheng B, Ma X, Wang N, Ding T, Guo L, Zhang X, Yang Y, Li C, Huo YX., Nat Commun 9(1), 2018
PMID: 30190534
Reengineering of the feedback-inhibition enzyme N-acetyl-L-glutamate kinase to enhance L-arginine production in Corynebacterium crenatum.
Zhang J, Xu M, Ge X, Zhang X, Yang T, Xu Z, Rao Z., J Ind Microbiol Biotechnol 44(2), 2017
PMID: 28005186
Bioprocess engineering to produce 9-(nonanoyloxy) nonanoic acid by a recombinant Corynebacterium glutamicum-based biocatalyst.
Kim H, Park S, Cho S, Yang J, Jeong K, Park J, Lee J., J Ind Microbiol Biotechnol 44(9), 2017
PMID: 28567672
Valorization of pyrolysis water: a biorefinery side stream, for 1,2-propanediol production with engineered Corynebacterium glutamicum.
Lange J, Müller F, Bernecker K, Dahmen N, Takors R, Blombach B., Biotechnol Biofuels 10(), 2017
PMID: 29201141
HipH Catalyzes the Hydroxylation of 4-Hydroxyisophthalate to Protocatechuate in 2,4-Xylenol Catabolism by Pseudomonas putida NCIMB 9866.
Chao HJ, Chen YF, Fang T, Xu Y, Huang WE, Zhou NY., Appl Environ Microbiol 82(2), 2016
PMID: 26567311
Efficient production of α-ketoglutarate in the gdh deleted Corynebacterium glutamicum by novel double-phase pH and biotin control strategy.
Li Y, Sun L, Feng J, Wu R, Xu Q, Zhang C, Chen N, Xie X., Bioprocess Biosyst Eng 39(6), 2016
PMID: 26946492
The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin.
Küberl A, Polen T, Bott M., Proc Natl Acad Sci U S A 113(17), 2016
PMID: 27078093
Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level.
Li Y, Cong H, Liu B, Song J, Sun X, Zhang J, Yang Q., Antonie Van Leeuwenhoek 109(9), 2016
PMID: 27255137
Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR.
Uhde A, Brühl N, Goldbeck O, Matano C, Gurow O, Rückert C, Marin K, Wendisch VF, Krämer R, Seibold GM., J Bacteriol 198(16), 2016
PMID: 27274030
Engineering Corynebacterium glutamicum for violacein hyper production.
Sun H, Zhao D, Xiong B, Zhang C, Bi C., Microb Cell Fact 15(1), 2016
PMID: 27557730
Application of CRISPRi in Corynebacterium glutamicum for shikimic acid production.
Zhang B, Liu ZQ, Liu C, Zheng YG., Biotechnol Lett 38(12), 2016
PMID: 27623797
The α-glucan phosphorylase MalP of Corynebacterium glutamicum is subject to transcriptional regulation and competitive inhibition by ADP-glucose.
Clermont L, Macha A, Müller LM, Derya SM, von Zaluskowski P, Eck A, Eikmanns BJ, Seibold GM., J Bacteriol 197(8), 2015
PMID: 25666133
Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycoredoxin and thioredoxin for regeneration and oxidative stress resistance.
Si M, Zhang L, Chaudhry MT, Ding W, Xu Y, Chen C, Akbar A, Shen X, Liu SJ., Appl Environ Microbiol 81(8), 2015
PMID: 25681179
Development of an efficient electroporation method for iturin A-producing Bacillus subtilis ZK.
Zhang Z, Ding ZT, Shu D, Luo D, Tan H., Int J Mol Sci 16(4), 2015
PMID: 25837631
Ribosome binding site libraries and pathway modules for shikimic acid synthesis with Corynebacterium glutamicum.
Zhang B, Zhou N, Liu YM, Liu C, Lou CB, Jiang CY, Liu SJ., Microb Cell Fact 14(), 2015
PMID: 25981633
Industrial Production of 2,3-Butanediol from the Engineered Corynebacterium glutamicum.
Yang J, Kim B, Kim H, Kweon Y, Lee S, Lee J., Appl Biochem Biotechnol 176(8), 2015
PMID: 26113219
Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate.
Leßmeier L, Pfeifenschneider J, Carnicer M, Heux S, Portais JC, Wendisch VF., Appl Microbiol Biotechnol 99(23), 2015
PMID: 26276544
Engineering Corynebacterium glutamicum to produce 5-aminolevulinic acid from glucose.
Yu X, Jin H, Liu W, Wang Q, Qi Q., Microb Cell Fact 14(), 2015
PMID: 26577071
NrdH Redoxin enhances resistance to multiple oxidative stresses by acting as a peroxidase cofactor in Corynebacterium glutamicum.
Si MR, Zhang L, Yang ZF, Xu YX, Liu YB, Jiang CY, Wang Y, Shen XH, Liu SJ., Appl Environ Microbiol 80(5), 2014
PMID: 24375145
Interaction sites of DivIVA and RodA from Corynebacterium glutamicum.
Sieger B, Bramkamp M., Front Microbiol 5(), 2014
PMID: 25709601
Synthetic promoter libraries for Corynebacterium glutamicum.
Rytter JV, Helmark S, Chen J, Lezyk MJ, Solem C, Jensen PR., Appl Microbiol Biotechnol 98(6), 2014
PMID: 24458563
Genetic characterization of 4-cresol catabolism in Corynebacterium glutamicum.
Li T, Chen X, Chaudhry MT, Zhang B, Jiang CY, Liu SJ., J Biotechnol 192 Pt B(), 2014
PMID: 24480572
High-throughput screening of a Corynebacterium glutamicum mutant library on genomic and metabolic level.
Reimer LC, Spura J, Schmidt-Hohagen K, Schomburg D., PLoS One 9(2), 2014
PMID: 24504095
Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Krämer R, Wendisch VF, Seibold GM., Appl Microbiol Biotechnol 98(12), 2014
PMID: 24668244
Enhancing Corynebacterium glutamicum robustness by over-expressing a gene, mshA, for mycothiol glycosyltransferase.
Liu YB, Chen C, Chaudhry MT, Si MR, Zhang L, Wang Y, Shen XH., Biotechnol Lett 36(7), 2014
PMID: 24737070
Effect of cofactor folate on the growth of Corynebacterium glutamicum SYPS-062 and L-serine accumulation.
Zhang X, Xu G, Li H, Dou W, Xu Z., Appl Biochem Biotechnol 173(7), 2014
PMID: 24859773
Construction of a novel expression system for use in Corynebacterium glutamicum.
Hu J, Li Y, Zhang H, Tan Y, Wang X., Plasmid 75(), 2014
PMID: 25108235
Production of L-lysine on different silage juices using genetically engineered Corynebacterium glutamicum.
Neuner A, Wagner I, Sieker T, Ulber R, Schneider K, Peifer S, Heinzle E., J Biotechnol 163(2), 2013
PMID: 22898177
Modification of histidine biosynthesis pathway genes and the impact on production of L-histidine in Corynebacterium glutamicum.
Cheng Y, Zhou Y, Yang L, Zhang C, Xu Q, Xie X, Chen N., Biotechnol Lett 35(5), 2013
PMID: 23355034
Chromosome segregation impacts on cell growth and division site selection in Corynebacterium glutamicum.
Donovan C, Schauss A, Krämer R, Bramkamp M., PLoS One 8(2), 2013
PMID: 23405112
Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains.
Lindner SN, Petrov DP, Hagmann CT, Henrich A, Krämer R, Eikmanns BJ, Wendisch VF, Seibold GM., Appl Environ Microbiol 79(8), 2013
PMID: 23396334
Establishment of cellobiose utilization for lipid production in Rhodococcus opacus PD630.
Hetzler S, Steinbüchel A., Appl Environ Microbiol 79(9), 2013
PMID: 23435878
Maltose uptake by the novel ABC transport system MusEFGK2I causes increased expression of ptsG in Corynebacterium glutamicum.
Henrich A, Kuhlmann N, Eck AW, Krämer R, Seibold GM., J Bacteriol 195(11), 2013
PMID: 23543710
The role of ARGR repressor regulation on L-arginine production in Corynebacterium crenatum.
Xu M, Rao Z, Dou W, Xu Z., Appl Biochem Biotechnol 170(3), 2013
PMID: 23564434
Physiological roles of mycothiol in detoxification and tolerance to multiple poisonous chemicals in Corynebacterium glutamicum.
Liu YB, Long MX, Yin YJ, Si MR, Zhang L, Lu ZQ, Wang Y, Shen XH., Arch Microbiol 195(6), 2013
PMID: 23615850
Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation.
Binder S, Siedler S, Marienhagen J, Bott M, Eggeling L., Nucleic Acids Res 41(12), 2013
PMID: 23630315
Saccharification of cellulose by recombinant Rhodococcus opacus PD630 strains.
Hetzler S, Bröker D, Steinbüchel A., Appl Environ Microbiol 79(17), 2013
PMID: 23793636
Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology.
Baumgart M, Unthan S, Rückert C, Sivalingam J, Grünberger A, Kalinowski J, Bott M, Noack S, Frunzke J., Appl Environ Microbiol 79(19), 2013
PMID: 23892752
A novel type of N-acetylglutamate synthase is involved in the first step of arginine biosynthesis in Corynebacterium glutamicum.
Petri K, Walter F, Persicke M, Rückert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24138314
The lipid II flippase RodA determines morphology and growth in Corynebacterium glutamicum.
Sieger B, Schubert K, Donovan C, Bramkamp M., Mol Microbiol 90(5), 2013
PMID: 24118443
Biotin protein ligase from Corynebacterium glutamicum: role for growth and L: -lysine production.
Peters-Wendisch P, Stansen KC, Götker S, Wendisch VF., Appl Microbiol Biotechnol 93(6), 2012
PMID: 22159614
Arabitol metabolism of Corynebacterium glutamicum and its regulation by AtlR.
Laslo T, von Zaluskowski P, Gabris C, Lodd E, Rückert C, Dangel P, Kalinowski J, Auchter M, Seibold G, Eikmanns BJ., J Bacteriol 194(5), 2012
PMID: 22178972
Characterization of the biotin uptake system encoded by the biotin-inducible bioYMN operon of Corynebacterium glutamicum.
Schneider J, Peters-Wendisch P, Stansen KC, Götker S, Maximow S, Krämer R, Wendisch VF., BMC Microbiol 12(), 2012
PMID: 22243621
Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient.
Schröder J, Maus I, Meyer K, Wördemann S, Blom J, Jaenicke S, Schneider J, Trost E, Tauch A., BMC Genomics 13(), 2012
PMID: 22524407
Phenylacetic acid catabolism and its transcriptional regulation in Corynebacterium glutamicum.
Chen X, Kohl TA, Rückert C, Rodionov DA, Li LH, Ding JY, Kalinowski J, Liu SJ., Appl Environ Microbiol 78(16), 2012
PMID: 22685150
Development and application of an arabinose-inducible expression system by facilitating inducer uptake in Corynebacterium glutamicum.
Zhang Y, Shang X, Lai S, Zhang G, Liang Y, Wen T., Appl Environ Microbiol 78(16), 2012
PMID: 22685153
The TetR-type transcriptional repressor RolR from Corynebacterium glutamicum regulates resorcinol catabolism by binding to a unique operator, rolO.
Li T, Zhao K, Huang Y, Li D, Jiang CY, Zhou N, Fan Z, Liu SJ., Appl Environ Microbiol 78(17), 2012
PMID: 22706057
Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum.
Ravasi P, Peiru S, Gramajo H, Menzella HG., Microb Cell Fact 11(), 2012
PMID: 23134565
Enhanced production of L-arginine by expression of Vitreoscilla hemoglobin using a novel expression system in Corynebacterium crenatum.
Xu M, Rao Z, Xu H, Lan C, Dou W, Zhang X, Xu H, Jin J, Xu Z., Appl Biochem Biotechnol 163(6), 2011
PMID: 20835781
The ncgl1108 (PheP (Cg)) gene encodes a new L-Phe transporter in Corynebacterium glutamicum.
Zhao Z, Ding JY, Li T, Zhou NY, Liu SJ., Appl Microbiol Biotechnol 90(6), 2011
PMID: 21468701
The glgB-encoded glycogen branching enzyme is essential for glycogen accumulation in Corynebacterium glutamicum.
Seibold GM, Breitinger KJ, Kempkes R, Both L, Krämer M, Dempf S, Eikmanns BJ., Microbiology 157(pt 11), 2011
PMID: 21903753
Characterization of an adenylate cyclase gene (cyaB) deletion mutant of Corynebacterium glutamicum ATCC 13032.
Cha PH, Park SY, Moon MW, Subhadra B, Oh TK, Kim E, Kim JF, Lee JK., Appl Microbiol Biotechnol 85(4), 2010
PMID: 19568747
The Zur regulon of Corynebacterium glutamicum ATCC 13032.
Schröder J, Jochmann N, Rodionov DA, Tauch A., BMC Genomics 11(), 2010
PMID: 20055984
PcaO positively regulates pcaHG of the beta-ketoadipate pathway in Corynebacterium glutamicum.
Zhao KX, Huang Y, Chen X, Wang NX, Liu SJ., J Bacteriol 192(6), 2010
PMID: 20081038
Subcellular localization and characterization of the ParAB system from Corynebacterium glutamicum.
Donovan C, Schwaiger A, Krämer R, Bramkamp M., J Bacteriol 192(13), 2010
PMID: 20435732
Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate.
Kato O, Youn JW, Stansen KC, Matsui D, Oikawa T, Wendisch VF., BMC Microbiol 10(), 2010
PMID: 21159175
Myo-inositol facilitators IolT1 and IolT2 enhance D-mannitol formation from D-fructose in Corynebacterium glutamicum.
Bäumchen C, Krings E, Bringer S, Eggeling L, Sahm H., FEMS Microbiol Lett 290(2), 2009
PMID: 19054080
Characterization of the LacI-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032.
Nentwich SS, Brinkrolf K, Gaigalat L, Hüser AT, Rey DA, Mohrbach T, Marin K, Pühler A, Tauch A, Kalinowski J., Microbiology 155(pt 1), 2009
PMID: 19118356
Elaboration of an electroporation protocol for large plasmids and wild-type strains of Bacillus thuringiensis.
Peng D, Luo Y, Guo S, Zeng H, Ju S, Yu Z, Sun M., J Appl Microbiol 106(6), 2009
PMID: 19291242
Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays.
Jochmann N, Kurze AK, Czaja LF, Brinkrolf K, Brune I, Hüser AT, Hansmeier N, Pühler A, Borovok I, Tauch A., Microbiology 155(pt 5), 2009
PMID: 19372162
A game with many players: control of gdh transcription in Corynebacterium glutamicum.
Hänssler E, Müller T, Palumbo K, Patek M, Brocker M, Krämer R, Burkovski A., J Biotechnol 142(2), 2009
PMID: 19394370
Physiological adaptation of Corynebacterium glutamicum to benzoate as alternative carbon source - a membrane proteome-centric view.
Haussmann U, Qi SW, Wolters D, Rögner M, Liu SJ, Poetsch A., Proteomics 9(14), 2009
PMID: 19639586
Microbial production of L -glutamate and L -glutamine by recombinant Corynebacterium glutamicum harboring Vitreoscilla hemoglobin gene vgb.
Liu Q, Zhang J, Wei XX, Ouyang SP, Wu Q, Chen GQ., Appl Microbiol Biotechnol 77(6), 2008
PMID: 18040683
Genetic and biochemical characterization of a 4-hydroxybenzoate hydroxylase from Corynebacterium glutamicum.
Huang Y, Zhao KX, Shen XH, Jiang CY, Liu SJ., Appl Microbiol Biotechnol 78(1), 2008
PMID: 18071645
The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences.
Brinkrolf K, Plöger S, Solle S, Brune I, Nentwich SS, Hüser AT, Kalinowski J, Pühler A, Tauch A., Microbiology 154(pt 4), 2008
PMID: 18375800
Corynebacterium glutamicum contains 3-deoxy-D-arabino-heptulosonate 7-phosphate synthases that display novel biochemical features.
Liu YJ, Li PP, Zhao KX, Wang BJ, Jiang CY, Drake HL, Liu SJ., Appl Environ Microbiol 74(17), 2008
PMID: 18621870
The IclR-type transcriptional repressor LtbR regulates the expression of leucine and tryptophan biosynthesis genes in the amino acid producer Corynebacterium glutamicum.
Brune I, Jochmann N, Brinkrolf K, Hüser AT, Gerstmeir R, Eikmanns BJ, Kalinowski J, Pühler A, Tauch A., J Bacteriol 189(7), 2007
PMID: 17259312
FarR, a putative regulator of amino acid metabolism in Corynebacterium glutamicum.
Hänssler E, Müller T, Jessberger N, Völzke A, Plassmeier J, Kalinowski J, Krämer R, Burkovski A., Appl Microbiol Biotechnol 76(3), 2007
PMID: 17483938
Genetic characterization of the resorcinol catabolic pathway in Corynebacterium glutamicum.
Huang Y, Zhao KX, Shen XH, Chaudhry MT, Jiang CY, Liu SJ., Appl Environ Microbiol 72(11), 2006
PMID: 16963551
Actinomycetes as host cells for production of recombinant proteins.
Nakashima N, Mitani Y, Tamura T., Microb Cell Fact 4(1), 2005
PMID: 15788099
Gene expression systems in corynebacteria.
Srivastava P, Deb JK., Protein Expr Purif 40(2), 2005
PMID: 15766862
Vanillate metabolism in Corynebacterium glutamicum.
Merkens H, Beckers G, Wirtz A, Burkovski A., Curr Microbiol 51(1), 2005
PMID: 15971090
Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction.
Rückert C, Koch DJ, Rey DA, Albersmeier A, Mormann S, Pühler A, Kalinowski J., BMC Genomics 6(), 2005
PMID: 16159395
The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate.
Koch DJ, Rückert C, Albersmeier A, Hüser AT, Tauch A, Pühler A, Kalinowski J., Mol Microbiol 58(2), 2005
PMID: 16194234
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl Environ Microbiol 71(10), 2005
PMID: 16204505
Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources.
Koch DJ, Rückert C, Rey DA, Mix A, Pühler A, Kalinowski J., Appl Environ Microbiol 71(10), 2005
PMID: 16204527
Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum.
Marienhagen J, Kennerknecht N, Sahm H, Eggeling L., J Bacteriol 187(22), 2005
PMID: 16267288
Metabolic engineering of Corynebacterium glutamicum for L-serine production.
Peters-Wendisch P, Stolz M, Etterich H, Kennerknecht N, Sahm H, Eggeling L., Appl Environ Microbiol 71(11), 2005
PMID: 16269752
Manipulating corynebacteria, from individual genes to chromosomes.
Vertès AA, Inui M, Yukawa H., Appl Environ Microbiol 71(12), 2005
PMID: 16332735
Genome-based analysis of biosynthetic aminotransferase genes of Corynebacterium glutamicum.
McHardy AC, Tauch A, Rückert C, Pühler A, Kalinowski J., J Biotechnol 104(1-3), 2003
PMID: 12948641
Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source.
Hüser AT, Becker A, Brune I, Dondrup M, Kalinowski J, Plassmeier J, Pühler A, Wiegräbe I, Tauch A., J Biotechnol 106(2-3), 2003
PMID: 14651867

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 12232668
PubMed | Europe PMC

Suchen in

Google Scholar