Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope

Brand S, Niehaus K, Pühler A, Kalinowski J (2003)
Archives of Microbiology 180(1): 33-44.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
By data mining in the sequence of the Corynebacterium glutamicum ATCC 13032 genome, six putative mycolyltransferase genes were identified that code for proteins with similarity to the N-terminal domain of the mycolic acid transferase PS1 of the related C. glutamicum strain ATCC 17965. The genes identified were designated cop1, cmt1, cmt2, cmt3, cmt4, and cmt5 (cmt from corynebacterium mycolyltransferases). cop1 encodes a protein of 657 amino acids, which is larger than the proteins encoded by the cmt genes with 365, 341, 483, 483, and 411 amino acids. Using bioinformatics tools, it was shown that all six gene products are equipped with signal peptides and esterase domains. Proteome analyses of the cell envelope of C. glutamicum ATCC 13032 resulted in identification of the proteins Cop1, Cmt1, Cmt2, and Cmt4. All six mycolyltransferase genes were used for mutational analysis. cmt4 could not be mutated and is considered to be essential. cop1 was found to play an additional role in cell shape formation. A triple mutant carrying mutations in cop1, cmt1, and cmt2 aggregated when cultivated in MM1 liquid medium. This mutant was also no longer able to synthesize trehalose dicorynomycolate (TDCM). Since single and double mutants of the genes cop1, cmt1, and cmt2 could form TDCM, it is concluded that the three genes, cop1, cmt1, and cmt2, are involved in TDCM biosynthesis. The presence of the putative esterase domain makes it highly possible that cop1, cmt1, and cmt2 encode enzymes synthesizing TDCM from trehalose monocorynomycolate.
Erscheinungsjahr
Zeitschriftentitel
Archives of Microbiology
Band
180
Ausgabe
1
Seite(n)
33-44
ISSN
eISSN
PUB-ID

Zitieren

Brand S, Niehaus K, Pühler A, Kalinowski J. Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope. Archives of Microbiology. 2003;180(1):33-44.
Brand, S., Niehaus, K., Pühler, A., & Kalinowski, J. (2003). Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope. Archives of Microbiology, 180(1), 33-44. doi:10.1007/s00203-003-0556-1
Brand, S., Niehaus, K., Pühler, A., and Kalinowski, J. (2003). Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope. Archives of Microbiology 180, 33-44.
Brand, S., et al., 2003. Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope. Archives of Microbiology, 180(1), p 33-44.
S. Brand, et al., “Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope”, Archives of Microbiology, vol. 180, 2003, pp. 33-44.
Brand, S., Niehaus, K., Pühler, A., Kalinowski, J.: Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope. Archives of Microbiology. 180, 33-44 (2003).
Brand, S., Niehaus, Karsten, Pühler, Alfred, and Kalinowski, Jörn. “Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope”. Archives of Microbiology 180.1 (2003): 33-44.

30 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The role of corynomycolic acids in Corynebacterium-host interaction.
Burkovski A., Antonie Van Leeuwenhoek 111(5), 2018
PMID: 29435693
Identification of specific posttranslational O-mycoloylations mediating protein targeting to the mycomembrane.
Carel C, Marcoux J, Réat V, Parra J, Latgé G, Laval F, Demange P, Burlet-Schiltz O, Milon A, Daffé M, Tropis MG, Renault MAM., Proc Natl Acad Sci U S A 114(16), 2017
PMID: 28373551
Physiological roles of sigma factor SigD in Corynebacterium glutamicum.
Taniguchi H, Busche T, Patschkowski T, Niehaus K, Pátek M, Kalinowski J, Wendisch VF., BMC Microbiol 17(1), 2017
PMID: 28701150
Impact of LytR-CpsA-Psr Proteins on Cell Wall Biosynthesis in Corynebacterium glutamicum.
Baumgart M, Schubert K, Bramkamp M, Frunzke J., J Bacteriol 198(22), 2016
PMID: 27551018
RND transporters protect Corynebacterium glutamicum from antibiotics by assembling the outer membrane.
Yang L, Lu S, Belardinelli J, Huc-Claustre E, Jones V, Jackson M, Zgurskaya HI., Microbiologyopen 3(4), 2014
PMID: 24942069
The three Mycobacterium tuberculosis antigen 85 isoforms have unique substrates and activities determined by non-active site regions.
Backus KM, Dolan MA, Barry CS, Joe M, McPhie P, Boshoff HI, Lowary TL, Davis BG, Barry CE., J Biol Chem 289(36), 2014
PMID: 25028517
Mycolic Acid Biosynthesis Genes in the Genome Sequence of Corynebacterium atypicum DSM 44849.
Tippelt A, Möllmann S, Albersmeier A, Jaenicke S, Rückert C, Tauch A., Genome Announc 2(4), 2014
PMID: 25146145
Serological proteome analysis of Corynebacterium pseudotuberculosis isolated from different hosts reveals novel candidates for prophylactics to control caseous lymphadenitis.
Seyffert N, Silva RF, Jardin J, Silva WM, Castro TL, Tartaglia NR, Santana KT, Portela RW, Silva A, Miyoshi A, Le Loir Y, Azevedo V., Vet Microbiol 174(1-2), 2014
PMID: 25236983
Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane.
Buschke N, Becker J, Schäfer R, Kiefer P, Biedendieck R, Wittmann C., Biotechnol J 8(5), 2013
PMID: 23447448
Identification of a mycoloyl transferase selectively involved in O-acylation of polypeptides in Corynebacteriales.
Huc E, de Sousa-D'Auria C, de la Sierra-Gallay IL, Salmeron C, van Tilbeurgh H, Bayan N, Houssin C, Daffé M, Tropis M., J Bacteriol 195(18), 2013
PMID: 23852866
C1 metabolism in Corynebacterium glutamicum: an endogenous pathway for oxidation of methanol to carbon dioxide.
Witthoff S, Mühlroth A, Marienhagen J, Bott M., Appl Environ Microbiol 79(22), 2013
PMID: 24014532
Current knowledge on mycolic acids in Corynebacterium glutamicum and their relevance for biotechnological processes.
Lanéelle MA, Tropis M, Daffé M., Appl Microbiol Biotechnol 97(23), 2013
PMID: 24113823
Adaptation of Corynebacterium glutamicum to salt-stress conditions.
Fränzel B, Trötschel C, Rückert C, Kalinowski J, Poetsch A, Wolters DA., Proteomics 10(3), 2010
PMID: 19950167
A deficiency in arabinogalactan biosynthesis affects Corynebacterium glutamicum mycolate outer membrane stability.
Bou Raad R, Méniche X, de Sousa-d'Auria C, Chami M, Salmeron C, Tropis M, Labarre C, Daffé M, Houssin C, Bayan N., J Bacteriol 192(11), 2010
PMID: 20363942
Identification of new secreted proteins and secretion of heterologous amylase by C. glutamicum.
Suzuki N, Watanabe K, Okibe N, Tsuchida Y, Inui M, Yukawa H., Appl Microbiol Biotechnol 82(3), 2009
PMID: 19066885
Scanning the Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences.
Watanabe K, Tsuchida Y, Okibe N, Teramoto H, Suzuki N, Inui M, Yukawa H., Microbiology 155(pt 3), 2009
PMID: 19246745
Physiological adaptation of Corynebacterium glutamicum to benzoate as alternative carbon source - a membrane proteome-centric view.
Haussmann U, Qi SW, Wolters D, Rögner M, Liu SJ, Poetsch A., Proteomics 9(14), 2009
PMID: 19639586
A mycolyl transferase mutant of Rhodococcus equi lacking capsule integrity is fully virulent.
Sydor T, von Bargen K, Becken U, Spuerck S, Nicholson VM, Prescott JF, Haas A., Vet Microbiol 128(3-4), 2008
PMID: 18063488
Partial redundancy in the synthesis of the D-arabinose incorporated in the cell wall arabinan of Corynebacterineae.
Meniche X, de Sousa-d'Auria C, Van-der-Rest B, Bhamidi S, Huc E, Huang H, De Paepe D, Tropis M, McNeil M, Daffé M, Houssin C., Microbiology 154(pt 8), 2008
PMID: 18667564
Analysis and modeling of mycolyl-transferases in the CMN group.
Ramulu HG, Adindla S, Guruprasad L., Bioinformation 1(5), 2006
PMID: 17597881
Mapping the membrane proteome of Corynebacterium glutamicum.
Schluesener D, Fischer F, Kruip J, Rögner M, Poetsch A., Proteomics 5(5), 2005
PMID: 15717325

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 12740729
PubMed | Europe PMC

Suchen in

Google Scholar