Identification and characterization of the last two unknown genes, dapC and dapF, in the succinylase branch of the L-lysine biosynthesis of Corynebacterium glutamicum

Hartmann M, Tauch A, Eggeling L, Bathe B, Mockel B, Pühler A, Kalinowski J (2003)
J Biotechnol 104(1-3): 199-211.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hartmann, M; Tauch, AndreasUniBi; Eggeling, L; Bathe, B; Mockel, B; Pühler, AlfredUniBi ; Kalinowski, JörnUniBi
Abstract / Bemerkung
The inspection of the complete genome sequence of Corynebacterium glutamicum ATCC 13032 led to the identification of dapC and dapF, the last two unknown genes of the succinylase branch of the L-lysine biosynthesis. The deduced DapF protein of C glutamicum is characterized by a two-domain structure and a conserved diaminopimelate (DAP) epimerase signature. Overexpression of dapF resulted in an 8-fold increase of the specific epimerase activity. A defined deletion in the dapF gene led to a reduced growth of C glutamicum in a medium with excess carbon but limited ammonium availability. The predicted DapC protein of C glutamicum shared 29% identical amino acids with DapC from Bordetella pertussis, the only enzymatically characterized N-succinyl-aminoketopimelate aminotransferase. Overexpression of the dapC gene in C glutamicum resulted in a 9-fold increase of the specific aminotransferase activity. A C glutamicum mutant with deleted dapC showed normal growth characteristics with excess carbon and limited ammonium. Even a mutation of the two genes dapC and ddh, interrupting both branches of the split pathway, could be established in C glutamicum. Overexpression of the dapF or the dapC gene in an industrial C. glutamicum strain resulted in an increased L-lysine production, indicating that both genes might be relevant targets for the development of improved production strains. (C) 2003 Elsevier B.V. All rights reserved.
Stichworte
lysine production; diaminopimelate; lysine biosynthesis; Corynebacterium glutamicum; biosynthesis
Erscheinungsjahr
2003
Zeitschriftentitel
J Biotechnol
Band
104
Ausgabe
1-3
Seite(n)
199-211
ISSN
0168-1656
Page URI
https://pub.uni-bielefeld.de/record/1610260

Zitieren

Hartmann M, Tauch A, Eggeling L, et al. Identification and characterization of the last two unknown genes, dapC and dapF, in the succinylase branch of the L-lysine biosynthesis of Corynebacterium glutamicum. J Biotechnol. 2003;104(1-3):199-211.
Hartmann, M., Tauch, A., Eggeling, L., Bathe, B., Mockel, B., Pühler, A., & Kalinowski, J. (2003). Identification and characterization of the last two unknown genes, dapC and dapF, in the succinylase branch of the L-lysine biosynthesis of Corynebacterium glutamicum. J Biotechnol, 104(1-3), 199-211. https://doi.org/10.1016/S0168-1656(03)00156-1
Hartmann, M, Tauch, Andreas, Eggeling, L, Bathe, B, Mockel, B, Pühler, Alfred, and Kalinowski, Jörn. 2003. “Identification and characterization of the last two unknown genes, dapC and dapF, in the succinylase branch of the L-lysine biosynthesis of Corynebacterium glutamicum”. J Biotechnol 104 (1-3): 199-211.
Hartmann, M., Tauch, A., Eggeling, L., Bathe, B., Mockel, B., Pühler, A., and Kalinowski, J. (2003). Identification and characterization of the last two unknown genes, dapC and dapF, in the succinylase branch of the L-lysine biosynthesis of Corynebacterium glutamicum. J Biotechnol 104, 199-211.
Hartmann, M., et al., 2003. Identification and characterization of the last two unknown genes, dapC and dapF, in the succinylase branch of the L-lysine biosynthesis of Corynebacterium glutamicum. J Biotechnol, 104(1-3), p 199-211.
M. Hartmann, et al., “Identification and characterization of the last two unknown genes, dapC and dapF, in the succinylase branch of the L-lysine biosynthesis of Corynebacterium glutamicum”, J Biotechnol, vol. 104, 2003, pp. 199-211.
Hartmann, M., Tauch, A., Eggeling, L., Bathe, B., Mockel, B., Pühler, A., Kalinowski, J.: Identification and characterization of the last two unknown genes, dapC and dapF, in the succinylase branch of the L-lysine biosynthesis of Corynebacterium glutamicum. J Biotechnol. 104, 199-211 (2003).
Hartmann, M, Tauch, Andreas, Eggeling, L, Bathe, B, Mockel, B, Pühler, Alfred, and Kalinowski, Jörn. “Identification and characterization of the last two unknown genes, dapC and dapF, in the succinylase branch of the L-lysine biosynthesis of Corynebacterium glutamicum”. J Biotechnol 104.1-3 (2003): 199-211.

19 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Microbial metabolites in nutrition, healthcare and agriculture.
Singh R, Kumar M, Mittal A, Mehta PK., 3 Biotech 7(1), 2017
PMID: 28391479
Three different classes of aminotransferases evolved prephenate aminotransferase functionality in arogenate-competent microorganisms.
Graindorge M, Giustini C, Kraut A, Moyet L, Curien G, Matringe M., J Biol Chem 289(6), 2014
PMID: 24302739
Metabolic engineering of the tricarboxylic acid cycle for improved lysine production by Corynebacterium glutamicum.
Becker J, Klopprogge C, Schröder H, Wittmann C., Appl Environ Microbiol 75(24), 2009
PMID: 19820141
The primordial metabolism: an ancestral interconnection between leucine, arginine, and lysine biosynthesis.
Fondi M, Brilli M, Emiliani G, Paffetti D, Fani R., BMC Evol Biol 7 Suppl 2(), 2007
PMID: 17767731
An LL-diaminopimelate aminotransferase defines a novel variant of the lysine biosynthesis pathway in plants.
Hudson AO, Singh BK, Leustek T, Gilvarg C., Plant Physiol 140(1), 2006
PMID: 16361515
MaGe: a microbial genome annotation system supported by synteny results.
Vallenet D, Labarre L, Rouy Z, Barbe V, Bocs S, Cruveiller S, Lajus A, Pascal G, Scarpelli C, Médigue C., Nucleic Acids Res 34(1), 2006
PMID: 16407324
L,L-diaminopimelate aminotransferase, a trans-kingdom enzyme shared by Chlamydia and plants for synthesis of diaminopimelate/lysine.
McCoy AJ, Adams NE, Hudson AO, Gilvarg C, Leustek T, Maurelli AT., Proc Natl Acad Sci U S A 103(47), 2006
PMID: 17093042
Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum.
Marienhagen J, Kennerknecht N, Sahm H, Eggeling L., J Bacteriol 187(22), 2005
PMID: 16267288
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A., J Biotechnol 104(1-3), 2003
PMID: 12948626
Genome-based analysis of biosynthetic aminotransferase genes of Corynebacterium glutamicum.
McHardy AC, Tauch A, Rückert C, Pühler A, Kalinowski J., J Biotechnol 104(1-3), 2003
PMID: 12948641

46 References

Daten bereitgestellt von Europe PubMed Central.

Exploiting the past and the future in protein secondary structure prediction.
Baldi P, Brunak S, Frasconi P, Soda G, Pollastri G., Bioinformatics 15(11), 1999
PMID: 10743560
Assay of proteins in the presence of interfering materials.
Bensadoun A, Weinstein D., Anal. Biochem. 70(1), 1976
PMID: 1259145
Structural symmetry: the three-dimensional structure of Haemophilus influenzae diaminopimelate epimerase.
Cirilli M, Zheng R, Scapin G, Blanchard JS., Biochemistry 37(47), 1998
PMID: 9843410
Cloning of the dapA dapB cluster of the lysine-secreting bacterium Corynebacterium glutamicum
Cremer, Mol. Gen. Genet. 220(), 1990
Metabolic engineering for L-lysine production by Corynebacterium glutamicum.
de Graaf AA, Eggeling L, Sahm H., Adv. Biochem. Eng. Biotechnol. 73(), 2001
PMID: 11816814
Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants.
Grant SG, Jessee J, Bloom FR, Hanahan D., Proc. Natl. Acad. Sci. U.S.A. 87(12), 1990
PMID: 2162051
LION and Degussa apply genomics to fermentation.
Hodgson J., Nat. Biotechnol. 16(8), 1998
PMID: 9702763
Nucleotide sequence of the meso-diaminopimelate D-dehydrogenase gene from Corynebacterium glutamicum.
Ishino S, Mizukami T, Yamaguchi K, Katsumata R, Araki K., Nucleic Acids Res. 15(9), 1987
PMID: 3588313
Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum.
Kalinowski J, Cremer J, Bachmann B, Eggeling L, Sahm H, Puhler A., Mol. Microbiol. 5(5), 1991
PMID: 1956296
Protoplast transformation of glutamate-producing bacteria with plasmid DNA.
Katsumata R, Ozaki A, Oka T, Furuya A., J. Bacteriol. 159(1), 1984
PMID: 6145700
N-Succinyl-L-2,6-diaminopimelic acid deacylase.
KINDLER SH, GILVARG C., J. Biol. Chem. 235(), 1960
PMID: 13756049

AUTHOR UNKNOWN, 0
Chemical mechanism of Haemophilus influenzae diaminopimelate epimerase.
Koo CW, Blanchard JS., Biochemistry 38(14), 1999
PMID: 10194362
Amino acids—technical production and use
Leuchtenberger, 1996
Plasmid pGA1 from Corynebacterium glutamicum codes for a gene product that positively influences plasmid copy number.
Nesvera J, Patek M, Hochmannova J, Abrhamova Z, Becvarova V, Jelinkova M, Vohradsky J., J. Bacteriol. 179(5), 1997
PMID: 9045809
A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant.
Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M., Appl. Microbiol. Biotechnol. 58(2), 2002
PMID: 11876415
Biosynthesis of threonine and lysine
Patte, 1996
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
Nucleotide sequence of the dapF gene and flanking regions from Escherichia coli K12.
Richaud C, Printz C., Nucleic Acids Res. 16(21), 1988
PMID: 3057443
Pathway analysis and metabolic engineering in Corynebacterium glutamicum.
Sahm H, Eggeling L, de Graaf AA., Biol. Chem. 381(9-10), 2000
PMID: 11076021

Sambrook, 1989
Enzymology of bacterial lysine biosynthesis.
Scapin G, Blanchard JS., Adv. Enzymol. Relat. Areas Mol. Biol. 72(), 1998
PMID: 9559056
A functionally split pathway for lysine synthesis in Corynebacterium glutamicium.
Schrumpf B, Schwarzer A, Kalinowski J, Puhler A, Eggeling L, Sahm H., J. Bacteriol. 173(14), 1991
PMID: 1906065
Corynebacterium glutamicum DNA is subjected to methylation-restriction in Escherichia coli.
Tauch A, Kirchner O, Wehmeier L, Kalinowski J, Puhler A., FEMS Microbiol. Lett. 123(3), 1994
PMID: 7988915
Strategy to sequence the genome of Corynebacterium glutamicum ATCC 13032: use of a cosmid and a bacterial artificial chromosome library.
Tauch A, Homann I, Mormann S, Ruberg S, Billault A, Bathe B, Brand S, Brockmann-Gretza O, Ruckert C, Schischka N, Wrenger C, Hoheisel J, Mockel B, Huthmacher K, Pfefferle W, Puhler A, Kalinowski J., J. Biotechnol. 95(1), 2002
PMID: 11879709
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668
Analysis of different DNA fragments of Corynebacterium glutamicum complementing dapE of Escherichia coli.
Wehrmann A, Eggeling L, Sahm H., Microbiology (Reading, Engl.) 140 ( Pt 12)(), 1994
PMID: 7881553
Purification and properties of diaminopimelic acid epimerase from Escherichia coli.
Wiseman JS, Nichols JS., J. Biol. Chem. 259(14), 1984
PMID: 6378903
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 12948639
PubMed | Europe PMC

Suchen in

Google Scholar