Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula

Küster H, Hohnjec N, Krajinski F, El Yahyaoui F, Manthey K, Gouzy J, Dondrup M, Meyer F, Kalinowski J, Brechenmacher L, van Tuinen D, et al. (2004)

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Küster, Helge; Hohnjec, N.; Krajinski, F.; El Yahyaoui, F.; Manthey, KatjaUniBi; Gouzy, J.; Dondrup, M.; Meyer, F.; Kalinowski, JörnUniBi; Brechenmacher, L.; van Tuinen, D.; Gianinazzi-Pearson, V.
Abstract / Bemerkung
To construct macro- and microarray tools suitable for expression profiling in root endosymbioses of the model legume Medicago truncatula, we PCR-amplified a total of 6048 cDNA probes representing genes expressed in uninfected roots, mycorrhizal roots and young root nodules [Nucleic Acids Res. 30 (2002) 5579]. Including additional probes for either tissue-specific or constitutively expressed control genes, 5651 successfully amplified gene-specific probes were used to grid macro- and to spot microarrays designated Mt6k-RIT (M. truncatula 6k root interaction transcriptome). Subsequent to a technical validation of microarray printing, we performed two pilot expression profiling experiments using Cy-labeled targets from Sinorhizobium meliloti-induced root nodules and Glomus intraradices-colonized arbuscular mycorrhizal roots. These targets detected marker genes for nodule and arbuscular mycorrhiza development, amongst them different nodule-specific leghemoglobin and nodulin genes as well as a mycorrhiza-specific phosphate transporter gene. In addition, we identified several dozens of genes that have so far not been reported to be differentially expressed in nodules or arbuscular mycorrhiza thus demonstrating that Mt6k-RIT arrays serve as useful tools for an identification of genes relevant for legume root endosymbioses. A comprehensive profiling of such candidate genes will be very helpful to the development of breeding strategies and for the improvement of cultivation management targeted at increasing legume use in sustainable agricultural systems. (C) 2003 Elsevier B.V. All rights reserved.
phosphate transporter; root nodule symbiosis; cDNA array; arbuscular mycorrhiza; PCR-based; expression profiling; nodulin genes
Page URI


Küster H, Hohnjec N, Krajinski F, et al. Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula. JOURNAL OF BIOTECHNOLOGY. 2004;108(2):95-113.
Küster, H., Hohnjec, N., Krajinski, F., El Yahyaoui, F., Manthey, K., Gouzy, J., Dondrup, M., et al. (2004). Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula. JOURNAL OF BIOTECHNOLOGY, 108(2), 95-113.
Küster, Helge, Hohnjec, N., Krajinski, F., El Yahyaoui, F., Manthey, Katja, Gouzy, J., Dondrup, M., et al. 2004. “Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula”. JOURNAL OF BIOTECHNOLOGY 108 (2): 95-113.
Küster, H., Hohnjec, N., Krajinski, F., El Yahyaoui, F., Manthey, K., Gouzy, J., Dondrup, M., Meyer, F., Kalinowski, J., Brechenmacher, L., et al. (2004). Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula. JOURNAL OF BIOTECHNOLOGY 108, 95-113.
Küster, H., et al., 2004. Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula. JOURNAL OF BIOTECHNOLOGY, 108(2), p 95-113.
H. Küster, et al., “Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula”, JOURNAL OF BIOTECHNOLOGY, vol. 108, 2004, pp. 95-113.
Küster, H., Hohnjec, N., Krajinski, F., El Yahyaoui, F., Manthey, K., Gouzy, J., Dondrup, M., Meyer, F., Kalinowski, J., Brechenmacher, L., van Tuinen, D., Gianinazzi-Pearson, V., Pühler, A., Gamas, P., Becker, A.: Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula. JOURNAL OF BIOTECHNOLOGY. 108, 95-113 (2004).
Küster, Helge, Hohnjec, N., Krajinski, F., El Yahyaoui, F., Manthey, Katja, Gouzy, J., Dondrup, M., Meyer, F., Kalinowski, Jörn, Brechenmacher, L., van Tuinen, D., Gianinazzi-Pearson, V., Pühler, Alfred, Gamas, P., and Becker, Anke. “Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula”. JOURNAL OF BIOTECHNOLOGY 108.2 (2004): 95-113.

56 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Unraveling the effect of arsenic on the model Medicago-Ensifer interaction: a transcriptomic meta-analysis.
Lafuente A, Pérez-Palacios P, Doukkali B, Molina-Sánchez MD, Jiménez-Zurdo JI, Caviedes MA, Rodríguez-Llorente ID, Pajuelo E., New Phytol 205(1), 2015
PMID: 25252248
Transcriptional profiling of Medicago truncatula during Erysiphe pisi infection.
Curto M, Krajinski F, Schlereth A, Rubiales D., Front Plant Sci 6(), 2015
PMID: 26217367
Nitrogen-Fixing Nodules Are an Important Source of Reduced Sulfur, Which Triggers Global Changes in Sulfur Metabolism in Lotus japonicus.
Kalloniati C, Krompas P, Karalias G, Udvardi MK, Rennenberg H, Herschbach C, Flemetakis E., Plant Cell 27(9), 2015
PMID: 26296963
Mutualism-parasitism paradigm synthesized from results of root-endophyte models.
Mandyam KG, Jumpponen A., Front Microbiol 5(), 2014
PMID: 25628615
Transcriptional responses of Medicago truncatula upon sulfur deficiency stress and arbuscular mycorrhizal symbiosis.
Wipf D, Mongelard G, van Tuinen D, Gutierrez L, Casieri L., Front Plant Sci 5(), 2014
PMID: 25520732
cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules.
Limpens E, Moling S, Hooiveld G, Pereira PA, Bisseling T, Becker JD, Küster H., PLoS One 8(5), 2013
PMID: 23734198
Phoma medicaginis stimulates the induction of the octadecanoid and phenylpropanoid pathways in Medicago truncatula.
Kamphuis LG, Williams AH, Küster H, Trengove RD, Singh KB, Oliver RP, Ellwood SR., Mol Plant Pathol 13(6), 2012
PMID: 22212347
Tissue-specific transcriptome analysis in nodules of Lotus japonicus.
Takanashi K, Takahashi H, Sakurai N, Sugiyama A, Suzuki H, Shibata D, Nakazono M, Yazaki K., Mol Plant Microbe Interact 25(7), 2012
PMID: 22432875
Two putative-aquaporin genes are differentially expressed during arbuscular mycorrhizal symbiosis in Lotus japonicus.
Giovannetti M, Balestrini R, Volpe V, Guether M, Straub D, Costa A, Ludewig U, Bonfante P., BMC Plant Biol 12(), 2012
PMID: 23046713
ST proteins, a new family of plant tandem repeat proteins with a DUF2775 domain mainly found in Fabaceae and Asteraceae.
Albornos L, Martín I, Iglesias R, Jiménez T, Labrador E, Dopico B., BMC Plant Biol 12(), 2012
PMID: 23134664
LjLHT1.2—a mycorrhiza-inducible plant amino acid transporter from Lotus japonicus
Guether M, Volpe V, Balestrini R, Requena N, Wipf D, Bonfante P., Biol Fertil Soils 47(8), 2011
PMID: IND44752743
A putative transporter is essential for integrating nutrient and hormone signaling with lateral root growth and nodule development in Medicago truncatula.
Yendrek CR, Lee YC, Morris V, Liang Y, Pislariu CI, Burkart G, Meckfessel MH, Salehin M, Kessler H, Wessler H, Lloyd M, Lutton H, Teillet A, Sherrier DJ, Journet EP, Harris JM, Dickstein R., Plant J 62(1), 2010
PMID: 20088899
Symbiosis-related pea genes modulate fungal and plant gene expression during the arbuscule stage of mycorrhiza with Glomus intraradices.
Kuznetsova E, Seddas-Dozolme PM, Arnould C, Tollot M, van Tuinen D, Borisov A, Gianinazzi S, Gianinazzi-Pearson V., Mycorrhiza 20(6), 2010
PMID: 20094894
Model legumes contribute to faba bean breeding
Rispail Nicolas, Kaló Péter, Kiss GyörgyB, Ellis THNoel, Gallardo Karine, Thompson RichardD, Prats Elena, Larrainzar Estibaliz, Ladrera Ruben, González EstherM, Arrese-Igor Cesar, Ferguson BrettJ, Gresshoff PeterM, Rubiales Diego., Field Crops Res 115(3), 2010
PMID: IND44316555
Comparative proteomic studies of root-microbe interactions.
Mathesius U., J Proteomics 72(3), 2009
PMID: 19152841
The signal peptide of the Medicago truncatula modular nodulin MtNOD25 operates as an address label for the specific targeting of proteins to nitrogen-fixing symbiosomes.
Hohnjec N, Lenz F, Fehlberg V, Vieweg MF, Baier MC, Hause B, Küster H., Mol Plant Microbe Interact 22(1), 2009
PMID: 19061403
Translating Medicago truncatula genomics to crop legumes.
Young ND, Udvardi M., Curr Opin Plant Biol 12(2), 2009
PMID: 19162532
Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis.
Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ., BMC Plant Biol 9(), 2009
PMID: 19161626
Metabolite profiling of mycorrhizal roots of Medicago truncatula.
Schliemann W, Ammer C, Strack D., Phytochemistry 69(1), 2008
PMID: 17706732
Increasing amino acid supply in pea embryos reveals specific interactions of N and C metabolism, and highlights the importance of mitochondrial metabolism.
Weigelt K, Küster H, Radchuk R, Müller M, Weichert H, Fait A, Fernie AR, Saalbach I, Weber H., Plant J 55(6), 2008
PMID: 18494854
Exploring the nuclear proteome of Medicago truncatula at the switch towards seed filling.
Repetto O, Rogniaux H, Firnhaber C, Zuber H, Küster H, Larré C, Thompson R, Gallardo K., Plant J 56(3), 2008
PMID: 18643982
Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1.
Combier JP, Küster H, Journet EP, Hohnjec N, Gamas P, Niebel A., Mol Plant Microbe Interact 21(8), 2008
PMID: 18616408
Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions.
Sun Z, Hans J, Walter MH, Matusova R, Beekwilder J, Verstappen FW, Ming Z, van Echtelt E, Strack D, Bisseling T, Bouwmeester HJ., Planta 228(5), 2008
PMID: 18716794
Medicago truncatula gene responses specific to arbuscular mycorrhiza interactions with different species and genera of Glomeromycota.
Massoumou M, van Tuinen D, Chatagnier O, Arnould C, Brechenmacher L, Sanchez L, Selim S, Gianinazzi S, Gianinazzi-Pearson V., Mycorrhiza 17(3), 2007
PMID: 17245570
MedicCyc: a biochemical pathway database for Medicago truncatula.
Urbanczyk-Wochniak E, Sumner LW., Bioinformatics 23(11), 2007
PMID: 17344243
Comparative transcriptome analysis reveals common and specific tags for root hair and crack-entry invasion in Sesbania rostrata.
Capoen W, Den Herder J, Rombauts S, De Gussem J, De Keyser A, Holsters M, Goormachtig S., Plant Physiol 144(4), 2007
PMID: 17600136
Transcript analysis of early nodulation events in Medicago truncatula.
Lohar DP, Sharopova N, Endre G, Peñuela S, Samac D, Town C, Silverstein KA, VandenBosch KA., Plant Physiol 140(1), 2006
PMID: 16377745
Transcriptomic approaches to unravel plant-pathogen interactions in legumes
Ameline-Torregrosa C, Dumas B, Krajinski F, Esquerre-Tugaye MT, Jacquet C., Euphytica 147(1-2), 2006
PMID: IND43816137
Functional genomics of plant transporters in legume nodules.
Benedito VA, Dai X, He J, Zhao PX, Udvardi MK., Functional plant biology : FPB. 33(8), 2006
PMID: IND43838505
Transcriptional snapshots provide insights into the molecular basis of arbuscular mycorrhiza in the model legume Medicago truncatula.
Hohnjec N, Henckel K, Bekel T, Gouzy J, Dondrup M, Goesmann A, Kuster H., Functional plant biology : FPB. 33(8), 2006
PMID: IND43838506
Genetics and functional genomics of legume nodulation.
Stacey G, Libault M, Brechenmacher L, Wan J, May GD., Curr Opin Plant Biol 9(2), 2006
PMID: 16458572
Genetic and genomic analysis of legume flowers and seeds.
Domoney C, Duc G, Ellis TH, Ferrándiz C, Firnhaber C, Gallardo K, Hofer J, Kopka J, Küster H, Madueño F, Munier-Jolain NG, Mayer K, Thompson R, Udvardi M, Salon C., Curr Opin Plant Biol 9(2), 2006
PMID: 16480914
A mass spectrometric approach to identify arbuscular mycorrhiza-related proteins in root plasma membrane fractions.
Valot B, Negroni L, Zivy M, Gianinazzi S, Dumas-Gaudot E., Proteomics 6 Suppl 1(), 2006
PMID: 16511816
Fungal and plant gene expression in arbuscular mycorrhizal symbiosis.
Balestrini R, Lanfranco L., Mycorrhiza 16(8), 2006
PMID: 17004063
Signaling in the arbuscular mycorrhizal symbiosis.
Harrison MJ., Annu Rev Microbiol 59(), 2005
PMID: 16153162
Peace talks and trade deals. Keys to long-term harmony in legume-microbe symbioses.
Oldroyd GE, Harrison MJ, Udvardi M., Plant Physiol 137(4), 2005
PMID: 15824283
The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules.
Krusell L, Krause K, Ott T, Desbrosses G, Krämer U, Sato S, Nakamura Y, Tabata S, James EK, Sandal N, Stougaard J, Kawaguchi M, Miyamoto A, Suganuma N, Udvardi MK., Plant Cell 17(5), 2005
PMID: 15805486
Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization.
Güimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U., Proc Natl Acad Sci U S A 102(22), 2005
PMID: 15905328
Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes.
Frenzel A, Manthey K, Perlick AM, Meyer F, Pühler A, Küster H, Krajinski F., Mol Plant Microbe Interact 18(8), 2005
PMID: 16134889
Identification of membrane-associated proteins regulated by the arbuscular mycorrhizal symbiosis.
Valot B, Dieu M, Recorbet G, Raes M, Gianinazzi S, Dumas-Gaudot E., Plant Mol Biol 59(4), 2005
PMID: 16244907
Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress.
Rivera-Becerril F, van Tuinen D, Martin-Laurent F, Metwally A, Dietz KJ, Gianinazzi S, Gianinazzi-Pearson V., Mycorrhiza 16(1), 2005
PMID: 16136340
Functional genomics of arbuscular mycorrhiza: decoding the symbiotic cell programme.
Gianinazzi-Pearson V, Brechenmacher L., Can J Bot 82(8), 2004
PMID: IND43654228
Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program.
El Yahyaoui F, Küster H, Ben Amor B, Hohnjec N, Pühler A, Becker A, Gouzy J, Vernié T, Gough C, Niebel A, Godiard L, Gamas P., Plant Physiol 136(2), 2004
PMID: 15466239
Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses.
Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Pühler A, Perlick AM, Küster H., Mol Plant Microbe Interact 17(10), 2004
PMID: 15497399

62 References

Daten bereitgestellt von Europe PubMed Central.

Legume nodulation and mycorrhizae formation; two extremes in host specificity meet.
Albrecht C, Geurts R, Bisseling T., EMBO J. 18(2), 1999
PMID: 9889184
Crop production in artificial culture solutions and in soils with special reference to factors influencing yields and absorption of inorganic nutrients
Arnon, Soil Sci. 50(), 1940
Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis
Barker, Plant Mol. Biol. Rep. 8(), 1990
The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation.
Amor BB, Shaw SL, Oldroyd GE, Maillet F, Penmetsa RV, Cook D, Long SR, Denarie J, Gough C., Plant J. 34(4), 2003
PMID: 12753588
Proteome analysis and identification of symbiosis-related proteins from Medicago truncatula Gaertn. by two-dimensional electrophoresis and mass spectrometry.
Bestel-Corre G, Dumas-Gaudot E, Poinsot V, Dieu M, Dierick JF, van TD, Remacle J, Gianinazzi-Pearson V, Gianinazzi S., Electrophoresis 23(1), 2002
PMID: 11824612

A carbonic anhydrase gene is induced in the nodule primordium and its cell-specific expression is controlled by the presence of Rhizobium during development.
Coba de la Pena T, Frugier F, McKhann HI, Bauer P, Brown S, Kondorosi A, Crespi M., Plant J. 11(3), 1997
PMID: 9107031
Model legumes get the nod
Cook, Plant Cell 9(), 1997
Molecular Mechanisms in Root Nodule Development.
Crespi M, Galvez S., J. Plant Growth Regul. 19(2), 2000
PMID: 11038225
enod40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth.
Crespi MD, Jurkevitch E, Poiret M, d'Aubenton-Carafa Y, Petrovics G, Kondorosi E, Kondorosi A., EMBO J. 13(21), 1994
PMID: 7957074
Nutrient transport across symbiotic membranes from legume nodules
Day, Aust. J. Plant Physiol. 28(), 2001
Exploring the metabolic and genetic control of gene expression on a genomic scale.
DeRisi JL, Iyer VR, Brown PO., Science 278(5338), 1997
PMID: 9381177
ENOD8, a novel early nodule-specific gene, is expressed in empty alfalfa nodules
Dickstein, Mol. Plant-Microbe Interact. 6(), 1993
Manufacturing DNA microarrays of high spot homogeneity and reduced background signal.
Diehl F, Grahlmann S, Beier M, Hoheisel JD., Nucleic Acids Res. 29(7), 2001
PMID: 11266573

Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments
Dudoit, Stat. Sin. 12(), 2002
Changes in polypeptide patterns in tobacco roots colonized by two Glomus species
Dumas-Gaudot, Mycorrhiza 4(), 1994
Genome-wide identification of nodule-specific transcripts in the model legume Medicago truncatula
Fedorova, Plant Physiol.130(), 2002
Analysis of parsley arbuscular mycorrhiza: infection development and mRNA levels of defense-related genes
Franken, Mol. Plant-Microbe Interact. 7(), 1994
The composite genome of the legume symbiont Sinorhizobium meliloti.
Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J., Science 293(5530), 2001
PMID: 11474104
Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development
Gamas, Mol. Plant-Microbe Interact. 9(), 1996
Rhizobium Nod factor perception and signalling
Geurts, Plant Cell Suppl. 2002(), 2002
Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi.
Gianinazzi-Pearson V, Dumas-Gaudot E, Gollotte A, Tahiri-Alaoui A, Gianinazzi S., New Phytol. 133(1), 1996
PMID: IND20632246
MtENOD16 and 20 are members of a family of phytocyanin-related early nodulins.
Greene EA, Erard M, Dedieu A, Barker DG., Plant Mol. Biol. 36(5), 1998
PMID: 9526510
Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics
Handberg, Plant J. 2(), 1992
Harrison MJ., Annu. Rev. Plant Physiol. Plant Mol. Biol. 50(), 1999
PMID: 15012214
Medicago truncatula ENOD11: a novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells.
Journet EP, El-Gachtouli N, Vernoud V, de Billy F, Pichon M, Dedieu A, Arnould C, Morandi D, Barker DG, Gianinazzi-Pearson V., Mol. Plant Microbe Interact. 14(6), 2001
PMID: 11386369
Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis.
Journet EP, van Tuinen D, Gouzy J, Crespeau H, Carreau V, Farmer MJ, Niebel A, Schiex T, Jaillon O, Chatagnier O, Godiard L, Micheli F, Kahn D, Gianinazzi-Pearson V, Gamas P., Nucleic Acids Res. 30(24), 2002
PMID: 12490726
Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti.
Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S., DNA Res. 7(6), 2000
PMID: 11214968
Identification and cDNA cloning of a new nodule-specific gene, Nms-25 (nodulin-25) of Medicago sativa.
Kiss GB, Vincze E, Vegh Z, Toth G, Soos J., Plant Mol. Biol. 14(4), 1990
PMID: 2102828
Mtha1, a plasma membrane H+-ATPase gene from Medicago truncatula, shows arbuscule-induced expression
Krajinski, Plant Biol. 4(), 2002
The asparagine synthetase gene VfAS1 is strongly expressed in the nitrogen-fixing zone of broad bean (Vicia faba L.) root nodules
Küster, Plant Sci. 124(), 1997

MtDB: a database for personalized data mining of the model legume Medicago truncatula transcriptome.
Lamblin AF, Crow JA, Johnson JE, Silverstein KA, Kunau TM, Kilian A, Benz D, Stromvik M, Endre G, VandenBosch KA, Cook DR, Young ND, Retzel EF., Nucleic Acids Res. 31(1), 2003
PMID: 12519981
Genetic mapping of Rhizobium meliloti.
Meade HM, Signer ER., Proc. Natl. Acad. Sci. U.S.A. 74(5), 1977
PMID: 266730
The TIGR Gene Indices: analysis of gene transcript sequences in highly sampled eukaryotic species.
Quackenbush J, Cho J, Lee D, Liang F, Holt I, Karamycheva S, Parvizi B, Pertea G, Sultana R, White J., Nucleic Acids Res. 29(1), 2001
PMID: 11125077
Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection.
Salzer P, Bonanomi A, Beyer K, Vogeli-Lange R, Aeschbacher RA, Lange J, Wiemken A, Kim D, Cook DR, Boller T., Mol. Plant Microbe Interact. 13(7), 2000
PMID: 10875337

Regulation of symbiotic root nodule development.
Schultze M, Kondorosi A., Annu. Rev. Genet. 32(), 1998
PMID: 9928474
A new fungal phylum, the Glomeromycota: phylogeny and evolution.
Schussler A, Schwarzott D, Walker C., Mycol. Res. 105(12), 2001
PMID: IND23264612
Partitioning of Intermediary Carbon Metabolism in Vesicular-Arbuscular Mycorrhizal Leek.
Shachar-Hill Y, Pfeffer PE, Douds D, Osman SF, Doner LW, Ratcliffe RG., Plant Physiol. 108(1), 1995
PMID: 12228450
Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated?
Smith, Aust. J. Plant Physiol. 28(), 2001
Differential expression within the glutamine synthetase gene family of the model legume Medicago truncatula.
Stanford AC, Larsen K, Barker DG, Cullimore JV., Plant Physiol. 103(1), 1993
PMID: 7516082
Regulators and regulation of legume root nodule development.
Stougaard J., Plant Physiol. 124(2), 2000
PMID: 11027704
Infections with various types of organisms stimulate transcription from a short promoter fragment of the potato gst1 gene
Strittmatter, Mol. Plant-Microbe Interact. 9(), 1996
Suggested nomenclature for plant genes involved in nodulation and symbiosis
van, Plant Mol. Biol. Rep. 2(), 1984
Advances in legume biology
VandenBosch, Plant Physiol. 131(), 2003
Phosphate transporters of Medicago truncatula and arbuscular mycorrhizal fungi
Versaw, Plant Soil 244(), 2002
Mapping the proteome of barrel medic (Medicago truncatula).
Watson BS, Asirvatham VS, Wang L, Sumner LW., Plant Physiol. 131(3), 2003
PMID: 12644662
Genomics insights into symbiotic nitrogen fixation.
Weidner S, Puhler A, Kuster H., Curr. Opin. Biotechnol. 14(2), 2003
PMID: 12732321
Growth and storage of YAC clones in Hogness Freezing Medium.
Werner E, Holder AA, Hoheisel JD., Nucleic Acids Res. 25(7), 1997
PMID: 9060445
Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula.
Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T, Meyer F, Franken P, Kuster H, Krajinski F., Mol. Plant Microbe Interact. 16(4), 2003
PMID: 12744459
Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation.
Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP., Nucleic Acids Res. 30(4), 2002
PMID: 11842121

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 15129719
PubMed | Europe PMC

Suchen in

Google Scholar