Evaluating the predictability of conformational switching in RNA

Voss B, Meyer C, Giegerich R (2004)
Bioinformatics 20(10): 1573-1582.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Voss, Björn; Meyer, Carsten; Giegerich, RobertUniBi
Abstract / Bemerkung
Motivation: There are various cases where the biological function of an RNA molecule involves a reversible change of conformation. paRNAss is a software approach to the prediction of such structural switching in RNA. It is based on three hypotheses about the secondary structure space of a switching RNA molecule that can be evaluated by RNA folding and structure comparison. In the positive case, the predicted structural switching must be verified experimentally. Results: After reviewing the strategy used in paRNAss, we present recent improvements on the algorithmic level of the approach, and the results of an evaluation procedure, comprising 1500 RNA sequences. It could be shown that the paRNAss approach performs well on known examples for conformational switching in RNA. The overall number of positive predictions was small, whereas for human 3' UTRs, representing regulatory important regions, it was substantially higher than for arbitrary natural and random sequences.
Page URI


Voss B, Meyer C, Giegerich R. Evaluating the predictability of conformational switching in RNA. Bioinformatics. 2004;20(10):1573-1582.
Voss, B., Meyer, C., & Giegerich, R. (2004). Evaluating the predictability of conformational switching in RNA. Bioinformatics, 20(10), 1573-1582. https://doi.org/10.1093/bioinformatics/bth129
Voss, B., Meyer, C., and Giegerich, R. (2004). Evaluating the predictability of conformational switching in RNA. Bioinformatics 20, 1573-1582.
Voss, B., Meyer, C., & Giegerich, R., 2004. Evaluating the predictability of conformational switching in RNA. Bioinformatics, 20(10), p 1573-1582.
B. Voss, C. Meyer, and R. Giegerich, “Evaluating the predictability of conformational switching in RNA”, Bioinformatics, vol. 20, 2004, pp. 1573-1582.
Voss, B., Meyer, C., Giegerich, R.: Evaluating the predictability of conformational switching in RNA. Bioinformatics. 20, 1573-1582 (2004).
Voss, Björn, Meyer, Carsten, and Giegerich, Robert. “Evaluating the predictability of conformational switching in RNA”. Bioinformatics 20.10 (2004): 1573-1582.

31 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Computational prediction of regulatory, premature transcription termination in bacteria.
Millman A, Dar D, Shamir M, Sorek R., Nucleic Acids Res 45(2), 2017
PMID: 27574119
SwiSpot: modeling riboswitches by spotting out switching sequences.
Barsacchi M, Novoa EM, Novoa EM, Kellis M, Bechini A., Bioinformatics 32(21), 2016
PMID: 27378291
Carotenogenesis Is Regulated by 5'UTR-Mediated Translation of Phytoene Synthase Splice Variants.
Álvarez D, Voß B, Maass D, Wüst F, Schaub P, Beyer P, Welsch R., Plant Physiol 172(4), 2016
PMID: 27729470
Analysing RNA-kinetics based on folding space abstraction.
Huang J, Voß B., BMC Bioinformatics 15(), 2014
PMID: 24575751
Detecting and comparing non-coding RNAs in the high-throughput era.
Bussotti G, Notredame C, Enright AJ., Int J Mol Sci 14(8), 2013
PMID: 23887659
Maximum expected accuracy structural neighbors of an RNA secondary structure.
Clote P, Lou F, Lorenz WA., BMC Bioinformatics 13 Suppl 5(), 2012
PMID: 22537010
Abstract folding space analysis based on helices.
Huang J, Backofen R, Voß B., RNA 18(12), 2012
PMID: 23104999
Finding stable local optimal RNA secondary structures.
Li Y, Zhang S., Bioinformatics 27(21), 2011
PMID: 21903624
Computing folding pathways between RNA secondary structures.
Dotu I, Lorenz WA, Van Hentenryck P, Clote P., Nucleic Acids Res 38(5), 2010
PMID: 20044352
Is thermosensing property of RNA thermometers unique?
Shah P, Gilchrist MA., PLoS One 5(7), 2010
PMID: 20625392
Quantifying slow evolutionary dynamics in RNA fitness landscapes.
Sulc P, Wagner A, Martin OC., J Bioinform Comput Biol 8(6), 2010
PMID: 21121025
Fuzzy kernel clustering of RNA secondary structure ensemble using a novel similarity metric.
Liu Q, Zhang Y, Xu Y, Ye X., J Biomol Struct Dyn 25(6), 2008
PMID: 18399702
RNACluster: An integrated tool for RNA secondary structure comparison and clustering.
Liu Q, Olman V, Liu H, Ye X, Qiu S, Xu Y., J Comput Chem 29(9), 2008
PMID: 18271070
Ensemble-based RNA secondary structure characterization.
Crozier SP, Garner HR., IEEE Eng Med Biol Mag 26(1), 2007
PMID: 17278775
In silico design of small RNA switches.
Avihoo A, Gabdank I, Shapira M, Barash D., IEEE Trans Nanobioscience 6(1), 2007
PMID: 17393844
Boltzmann probability of RNA structural neighbors and riboswitch detection.
Freyhult E, Moulton V, Clote P., Bioinformatics 23(16), 2007
PMID: 17573364
RNA thermometers.
Narberhaus F, Waldminghaus T, Chowdhury S., FEMS Microbiol Rev 30(1), 2006
PMID: 16438677
Complete probabilistic analysis of RNA shapes.
Voss B, Giegerich R, Rehmsmeier M., BMC Biol 4(), 2006
PMID: 16480488
Identification of consensus RNA secondary structures using suffix arrays.
Anwar M, Nguyen T, Turcotte M., BMC Bioinformatics 7(), 2006
PMID: 16677380
Shape similarity measures for the design of small RNA switches.
Avihoo A, Barash D., J Biomol Struct Dyn 24(1), 2006
PMID: 16780371
Structural analysis of aligned RNAs.
Voss B., Nucleic Acids Res 34(19), 2006
PMID: 17020924
Combinatorics of saturated secondary structures of RNA.
Clote P., J Comput Biol 13(9), 2006
PMID: 17147486
On realizing shapes in the theory of RNA neutral networks.
Clote P, Gasieniec L, Kolpakov R, Kranakis E, Krizanc D., J Theor Biol 236(2), 2005
PMID: 15878180
Abstract shapes of RNA.
Giegerich R, Voss B, Rehmsmeier M., Nucleic Acids Res 32(16), 2004
PMID: 15371549
A comprehensive comparison of comparative RNA structure prediction approaches.
Gardner PP, Giegerich R., BMC Bioinformatics 5(), 2004
PMID: 15458580


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 14962925
PubMed | Europe PMC

Suchen in

Google Scholar