The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum

Hartmann M, Barsch A, Niehaus K, Pühler A, Tauch A, Kalinowski J (2004)
ARCHIVES OF MICROBIOLOGY 182(4): 299-312.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hartmann, M; Barsch, A; Niehaus, K; Pühler, AlfredUniBi ; Tauch, A; Kalinowski, JörnUniBi
Abstract / Bemerkung
The genome of Corynebacterium glutamicum ATCC 13032 contains two genes, rpf1 and rpf2, encoding proteins with similarities to the essential resuscitation-promoting factor (Rpf) of Micrococcus luteus. Both the Rpf1 (20.4 kDa) and Rpf2 (40.3 kDa) proteins share the so-called Rpf motif, a highly conserved protein domain of approximately 70 amino acids, which is also present in Rpf-like proteins of other gram-positive bacteria with a high G+C content of the chromosomal DNA. Purification of the C. glutamicum Rpf2 protein from concentrated supernatants, SDS-PAGE and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identified modified Rpf2 variants with increased or reduced mobility when compared with the calculated size of Rpf2. A Western blot-based enzyme immunoassay demonstrated glycosylation of the Rpf2 variants with higher molecular masses. Galactose and mannose were identified as two components of the oligosaccharide portion of the Rpf2 glycoprotein by capillary gas chromatography coupled to mass spectrometry. The Rpf2 protein was localized on the surface of C. glutamicum with the use of immuno-fluorescence microscopy. C. glutamicum strains with defined deletions in the rpf1 or rpf2 gene or simultaneous deletions in both rpf genes were constructed, indicating that the rpf genes are neither individually nor collectively essential for C. glutamicum. The C. glutamicum rpf double mutant displayed slower growth and a prolonged lag phase after transfer of long-stored cells into fresh medium. The addition of supernatant from exponentially growing cultures of the rpf double mutant, the wild type or C. glutamicum strains with increased expression of the rpf1 or rpf2 gene significantly reduced the lag phase of long-stored wild-type and rpf single mutant strains, but addition of purified His-tagged Rpf1 or Rpf2 did not. In contrast, the lag phase of the C. glutamicum rpf double mutant was not affected upon addition of these culture supernatants.
Stichworte
resuscitation-promoting factor; Corynebacterium glutamicum; protein glycosylation; intercellular communication
Erscheinungsjahr
2004
Zeitschriftentitel
ARCHIVES OF MICROBIOLOGY
Band
182
Ausgabe
4
Seite(n)
299-312
ISSN
0302-8933
eISSN
1432-072X
Page URI
https://pub.uni-bielefeld.de/record/1606270

Zitieren

Hartmann M, Barsch A, Niehaus K, Pühler A, Tauch A, Kalinowski J. The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum. ARCHIVES OF MICROBIOLOGY. 2004;182(4):299-312.
Hartmann, M., Barsch, A., Niehaus, K., Pühler, A., Tauch, A., & Kalinowski, J. (2004). The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum. ARCHIVES OF MICROBIOLOGY, 182(4), 299-312. https://doi.org/10.1007/s00203-004-0713-1
Hartmann, M, Barsch, A, Niehaus, K, Pühler, Alfred, Tauch, A, and Kalinowski, Jörn. 2004. “The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum”. ARCHIVES OF MICROBIOLOGY 182 (4): 299-312.
Hartmann, M., Barsch, A., Niehaus, K., Pühler, A., Tauch, A., and Kalinowski, J. (2004). The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum. ARCHIVES OF MICROBIOLOGY 182, 299-312.
Hartmann, M., et al., 2004. The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum. ARCHIVES OF MICROBIOLOGY, 182(4), p 299-312.
M. Hartmann, et al., “The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum”, ARCHIVES OF MICROBIOLOGY, vol. 182, 2004, pp. 299-312.
Hartmann, M., Barsch, A., Niehaus, K., Pühler, A., Tauch, A., Kalinowski, J.: The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum. ARCHIVES OF MICROBIOLOGY. 182, 299-312 (2004).
Hartmann, M, Barsch, A, Niehaus, K, Pühler, Alfred, Tauch, A, and Kalinowski, Jörn. “The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum”. ARCHIVES OF MICROBIOLOGY 182.4 (2004): 299-312.

35 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Mannoside recognition and degradation by bacteria.
Ladevèze S, Laville E, Despres J, Mosoni P, Potocki-Véronèse G., Biol Rev Camb Philos Soc 92(4), 2017
PMID: 27995767
Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester.
Krämer CE, Singh A, Helfrich S, Grünberger A, Wiechert W, Nöh K, Kohlheyer D., PLoS One 10(10), 2015
PMID: 26513257
Resuscitation promoting factor (Rpf) from Tomitella biformata AHU 1821(T) promotes growth and resuscitates non-dividing cells.
Dewi Puspita I, Uehara M, Katayama T, Kikuchi Y, Kitagawa W, Kamagata Y, Asano K, Nakatsu CH, Tanaka M., Microbes Environ 28(1), 2013
PMID: 23100022
Exploring the potential environmental functions of viable but non-culturable bacteria.
Su X, Chen X, Hu J, Shen C, Ding L., World J Microbiol Biotechnol 29(12), 2013
PMID: 23733177
Pour some sugar on it: the expanding world of bacterial protein O-linked glycosylation.
Iwashkiw JA, Vozza NF, Kinsella RL, Feldman MF., Mol Microbiol 89(1), 2013
PMID: 23679002
Exploring the potential environmental functions of viable but non-culturable bacteria
Su X, Chen X, Hu J, Shen C, Ding L., World J Microbiol Biotechnol 29(12), 2013
PMID: IND500704001
Biochemical disclosure of the mycolate outer membrane of Corynebacterium glutamicum.
Marchand CH, Salmeron C, Bou Raad R, Méniche X, Chami M, Masi M, Blanot D, Daffé M, Tropis M, Huc E, Le Maréchal P, Decottignies P, Bayan N., J Bacteriol 194(3), 2012
PMID: 22123248
Deletion of manC in Corynebacterium glutamicum results in a phospho-myo-inositol mannoside- and lipoglycan-deficient mutant.
Mishra AK, Krumbach K, Rittmann D, Batt SM, Lee OY, De S, Frunzke J, Besra GS, Eggeling L., Microbiology 158(pt 7), 2012
PMID: 22539165
Postgenomic approaches to using corynebacteria as biocatalysts.
Vertès AA, Inui M, Yukawa H., Annu Rev Microbiol 66(), 2012
PMID: 22803796
A combined approach for comparative exoproteome analysis of Corynebacterium pseudotuberculosis.
Pacheco LG, Slade SE, Seyffert N, Santos AR, Castro TL, Silva WM, Santos AV, Santos SG, Farias LM, Carvalho MA, Pimenta AM, Meyer R, Silva A, Scrivens JH, Oliveira SC, Miyoshi A, Dowson CG, Azevedo V., BMC Microbiol 11(1), 2011
PMID: 21241507
Structural changes and cellular localization of resuscitation-promoting factor in environmental isolates of Micrococcus luteus.
Koltunov V, Greenblatt CL, Goncharenko AV, Demina GR, Klein BY, Young M, Kaprelyants AS., Microb Ecol 59(2), 2010
PMID: 19730766
Identification of new secreted proteins and secretion of heterologous amylase by C. glutamicum.
Suzuki N, Watanabe K, Okibe N, Tsuchida Y, Inui M, Yukawa H., Appl Microbiol Biotechnol 82(3), 2009
PMID: 19066885
Scanning the Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences.
Watanabe K, Tsuchida Y, Okibe N, Teramoto H, Suzuki N, Inui M, Yukawa H., Microbiology 155(pt 3), 2009
PMID: 19246745
Stress, sublethal injury, resuscitation, and virulence of bacterial foodborne pathogens.
Wesche AM, Gurtler JB, Marks BP, Ryser ET., J Food Prot 72(5), 2009
PMID: 19517746
The resuscitation-promoting factors of Mycobacterium tuberculosis are required for virulence and resuscitation from dormancy but are collectively dispensable for growth in vitro.
Kana BD, Gordhan BG, Downing KJ, Sung N, Vostroktunova G, Machowski EE, Tsenova L, Young M, Kaprelyants A, Kaplan G, Mizrahi V., Mol Microbiol 67(3), 2008
PMID: 18186793
Bacterial growth and cell division: a mycobacterial perspective.
Hett EC, Rubin EJ., Microbiol Mol Biol Rev 72(1), 2008
PMID: 18322037
A partner for the resuscitation-promoting factors of Mycobacterium tuberculosis.
Hett EC, Chao MC, Steyn AJ, Fortune SM, Deng LL, Rubin EJ., Mol Microbiol 66(3), 2007
PMID: 17919286
Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation.
Mukamolova GV, Murzin AG, Salina EG, Demina GR, Kell DB, Kaprelyants AS, Young M., Mol Microbiol 59(1), 2006
PMID: 16359320
Proteins of the Rpf (resuscitation promoting factor) family are peptidoglycan hydrolases.
Telkov MV, Demina GR, Voloshin SA, Salina EG, Dudik TV, Stekhanova TN, Mukamolova GV, Kazaryan KA, Goncharenko AV, Young M, Kaprelyants AS., Biochemistry (Mosc) 71(4), 2006
PMID: 16615861
Deletion of the Mycobacterium tuberculosis resuscitation-promoting factor Rv1009 gene results in delayed reactivation from chronic tuberculosis.
Tufariello JM, Mi K, Xu J, Manabe YC, Kesavan AK, Drumm J, Tanaka K, Jacobs WR, Chan J., Infect Immun 74(5), 2006
PMID: 16622237
Wake up! Peptidoglycan lysis and bacterial non-growth states.
Keep NH, Ward JM, Cohen-Gonsaud M, Henderson B., Trends Microbiol 14(6), 2006
PMID: 16675219
The structure of a resuscitation-promoting factor domain from Mycobacterium tuberculosis shows homology to lysozymes.
Cohen-Gonsaud M, Barthe P, Bagnéris C, Henderson B, Ward J, Roumestand C, Keep NH., Nat Struct Mol Biol 12(3), 2005
PMID: 15723078

42 References

Daten bereitgestellt von Europe PubMed Central.

Never say never again: protein glycosylation in pathogenic bacteria.
Benz I, Schmidt MA., Mol. Microbiol. 45(2), 2002
PMID: 12123443
Bacterial sex pheromone-induced plasmid transfer.
Clewell DB., Cell 73(1), 1993
PMID: 8462105
Resuscitation-promoting factors possess a lysozyme-like domain.
Cohen-Gonsaud M, Keep NH, Davies AP, Ward J, Henderson B, Labesse G., Trends Biochem. Sci. 29(1), 2004
PMID: 14729326
Cell-cell communication in gram-positive bacteria.
Dunny GM, Leonard BA., Annu. Rev. Microbiol. 51(), 1997
PMID: 9343359
Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases.
Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C., Proc. Natl. Acad. Sci. U.S.A. 90(11), 1993
PMID: 8506346
Industrial production of amino acids by coryneform bacteria.
Hermann T., J. Biotechnol. 104(1-3), 2003
PMID: 12948636
Proteome analysis of Corynebacterium glutamicum.
Hermann T, Pfefferle W, Baumann C, Busker E, Schaffer S, Bott M, Sahm H, Dusch N, Kalinowski J, Puhler A, Bendt AK, Kramer R, Burkovski A., Electrophoresis 22(9), 2001
PMID: 11425227
The Corynebacterium glutamicum genome: features and impacts on biotechnological processes.
Ikeda M, Nakagawa S., Appl. Microbiol. Biotechnol. 62(2-3), 2003
PMID: 12743753
How and why bacteria talk to each other.
Kaiser D, Losick R., Cell 73(5), 1993
PMID: 8500179
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Do bacteria need to communicate with each other for growth?
Kaprelyants AS, Kell DB., Trends Microbiol. 4(6), 1996
PMID: 8795160
Protoplast transformation of glutamate-producing bacteria with plasmid DNA.
Katsumata R, Ozaki A, Oka T, Furuya A., J. Bacteriol. 159(1), 1984
PMID: 6145700
Bacterial dormancy and culturability: the role of autocrine growth factors.
Kell DB, Young M., Curr. Opin. Microbiol. 3(3), 2000
PMID: 10851153
Pheromones, social behaviour and the functions of secondary metabolism in bacteria.
Kell DB, Kaprelyants AS, Grafen A., Trends Ecol. Evol. (Amst.) 10(3), 1995
PMID: 21236981
Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria.
Kleerebezem M, Quadri LE, Kuipers OP, de Vos WM., Mol. Microbiol. 24(5), 1997
PMID: 9219998
The ins and outs of peptide signaling.
Lazazzera BA, Grossman AD., Trends Microbiol. 6(7), 1998
PMID: 9717218
Protein glycosylation. Structural and functional aspects.
Lis H, Sharon N., Eur. J. Biochem. 218(1), 1993
PMID: 8243456
A bacterial cytokine.
Mukamolova GV, Kaprelyants AS, Young DI, Young M, Kell DB., Proc. Natl. Acad. Sci. U.S.A. 95(15), 1998
PMID: 9671779
Stimulation of the multiplication of Micrococcus luteus by an autocrine growth factor.
Mukamolova GV, Kormer SS, Kell DB, Kaprelyants AS., Arch. Microbiol. 172(1), 1999
PMID: 10398746
The rpf gene of Micrococcus luteus encodes an essential secreted growth factor.
Mukamolova GV, Turapov OA, Kazarian K, Telkov M, Kaprelyants AS, Kell DB, Young M., Mol. Microbiol. 46(3), 2002
PMID: 12410820

GV, Mol Microbiol 46(), 2002
Probability-based protein identification by searching sequence databases using mass spectrometry data.
Perkins DN, Pappin DJ, Creasy DM, Cottrell JS., Electrophoresis 20(18), 1999
PMID: 10612281
Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane.
Puech V, Chami M, Lemassu A, Laneelle MA, Schiffler B, Gounon P, Bayan N, Benz R, Daffe M., Microbiology (Reading, Engl.) 147(Pt 5), 2001
PMID: 11320139

J, 1989
Glycobiology of surface layer proteins.
Schaffer C, Messner P., Biochimie 83(7), 2001
PMID: 11522387
Prokaryotic glycosylation.
Schaffer C, Graninger M, Messner P., Proteomics 1(2), 2001
PMID: 11680871
Pheromones among the procaryotes.
Stephens K., Crit. Rev. Microbiol. 13(4), 1986
PMID: 3095030

SV, 1981
Gram-negative bacterial communication by N-acyl homoserine lactones: a universal language?
Swift S, Bainton NJ, Winson MK., Trends Microbiol. 2(6), 1994
PMID: 8087450
Corynebacterium glutamicum DNA is subjected to methylation-restriction in Escherichia coli.
Tauch A, Kirchner O, Wehmeier L, Kalinowski J, Puhler A., FEMS Microbiol. Lett. 123(3), 1994
PMID: 7988915
Strategy to sequence the genome of Corynebacterium glutamicum ATCC 13032: use of a cosmid and a bacterial artificial chromosome library.
Tauch A, Homann I, Mormann S, Ruberg S, Billault A, Bathe B, Brand S, Brockmann-Gretza O, Ruckert C, Schischka N, Wrenger C, Hoheisel J, Mockel B, Huthmacher K, Pfefferle W, Puhler A, Kalinowski J., J. Biotechnol. 95(1), 2002
PMID: 11879709
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 15480574
PubMed | Europe PMC

Suchen in

Google Scholar