The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032

Rey DA, Nentwich SS, Koch DJ, Rückert C, Pühler A, Tauch A, Kalinowski J (2005)
MOLECULAR MICROBIOLOGY 56(4): 871-887.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
In a recent proteomics study we have shown that the mcbR gene of Corynebacterium glutamicum ATCC 13032 most probably encodes a transcriptional repressor of the TetR type, which regulates the expression of at least six genes involved in the synthesis of sulphur-containing amino acids. By means of DNA microarray hybridizations we detected 86 genes with enhanced transcription in an mcbR mutant when compared with the wild-type strain. Bioinformatic analysis identified the inverted repeat 5'-TAGAC-N6-GTCTA-3' as a consensus sequence within the upstream region of 22 genes and operons, suggesting that the transcription of at least 45 genes is directly controlled by the McbR repressor. These 45 genes encode a variety of functions in (S-adenosyl)methionine and cysteine biosynthesis, in sulphate reduction, in uptake and utilization of sulphur-containing compounds and in transcriptional regulation. The function of the inverted repeat motif as potential McbR binding site in front of the genes hom, cysI, cysK, metK and mcbR was verified experimentally by competitive electrophoretic mobility shift analysis. A systematic search for the potential effector substance modulating the function of McbR revealed that only S-adenosylhomocysteine prevented the binding of McbR to its target sequence. These results indicate that the transcriptional repressor McbR directly regulates a set of genes comprising all aspects of transport and metabolism of the macroelement sulphur in C. glutamicum. As the activity of McbR is modulated by S-adenosylhomocysteine, a major product of transmethylation reactions, the results point also to a novel regulatory mechanism in bacteria to control the biosynthesis of S-adenosylmethionine.
Erscheinungsjahr
Zeitschriftentitel
MOLECULAR MICROBIOLOGY
Band
56
Ausgabe
4
Seite(n)
871-887
ISSN
PUB-ID

Zitieren

Rey DA, Nentwich SS, Koch DJ, et al. The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032. MOLECULAR MICROBIOLOGY. 2005;56(4):871-887.
Rey, D. A., Nentwich, S. S., Koch, D. J., Rückert, C., Pühler, A., Tauch, A., & Kalinowski, J. (2005). The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032. MOLECULAR MICROBIOLOGY, 56(4), 871-887. doi:10.1111/j.1365-2958.2005.04586.x
Rey, D. A., Nentwich, S. S., Koch, D. J., Rückert, C., Pühler, A., Tauch, A., and Kalinowski, J. (2005). The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032. MOLECULAR MICROBIOLOGY 56, 871-887.
Rey, D.A., et al., 2005. The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032. MOLECULAR MICROBIOLOGY, 56(4), p 871-887.
D.A. Rey, et al., “The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032”, MOLECULAR MICROBIOLOGY, vol. 56, 2005, pp. 871-887.
Rey, D.A., Nentwich, S.S., Koch, D.J., Rückert, C., Pühler, A., Tauch, A., Kalinowski, J.: The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032. MOLECULAR MICROBIOLOGY. 56, 871-887 (2005).
Rey, D. A., Nentwich, S. S., Koch, D. J., Rückert, Christian, Pühler, Alfred, Tauch, Andreas, and Kalinowski, Jörn. “The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032”. MOLECULAR MICROBIOLOGY 56.4 (2005): 871-887.

55 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

RNase E/G-dependent degradation of metE mRNA, encoding methionine synthase, in Corynebacterium glutamicum.
Endo S, Maeda T, Kawame T, Iwai N, Wachi M., J Gen Appl Microbiol 65(1), 2019
PMID: 29984738
Production of amino acids - Genetic and metabolic engineering approaches.
Lee JH, Wendisch VF., Bioresour Technol 245(pt b), 2017
PMID: 28552565
Metabolic engineering of Corynebacterium glutamicum ATCC13032 to produce S-adenosyl-L-methionine.
Han G, Hu X, Qin T, Li Y, Wang X., Enzyme Microb Technol 83(), 2016
PMID: 26777246
Regulons of global transcription factors in Corynebacterium glutamicum.
Toyoda K, Inui M., Appl Microbiol Biotechnol 100(1), 2016
PMID: 26496920
Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level.
Li Y, Cong H, Liu B, Song J, Sun X, Zhang J, Yang Q., Antonie Van Leeuwenhoek 109(9), 2016
PMID: 27255137
Metabolic engineering of Corynebacterium glutamicum strain ATCC13032 to produce L-methionine.
Qin T, Hu X, Hu J, Wang X., Biotechnol Appl Biochem 62(4), 2015
PMID: 25196586
Control of methionine metabolism by the SahR transcriptional regulator in Proteobacteria.
Novichkov PS, Li X, Kuehl JV, Deutschbauer AM, Arkin AP, Price MN, Rodionov DA., Environ Microbiol 16(1), 2014
PMID: 24118949
Comparative genomics of transcriptional regulation of methionine metabolism in Proteobacteria.
Leyn SA, Suvorova IA, Kholina TD, Sherstneva SS, Novichkov PS, Gelfand MS, Rodionov DA., PLoS One 9(11), 2014
PMID: 25411846
Visualization of imbalances in sulfur assimilation and synthesis of sulfur-containing amino acids at the single-cell level.
Hoffmann K, Grünberger A, Lausberg F, Bott M, Eggeling L., Appl Environ Microbiol 79(21), 2013
PMID: 23995919
The TetR family of regulators.
Cuthbertson L, Nodwell JR., Microbiol Mol Biol Rev 77(3), 2013
PMID: 24006471
Global regulation of the response to sulfur availability in the cheese-related bacterium Brevibacterium aurantiacum.
Forquin MP, Hébert A, Roux A, Aubert J, Proux C, Heilier JF, Landaud S, Junot C, Bonnarme P, Martin-Verstraete I., Appl Environ Microbiol 77(4), 2011
PMID: 21169450
Adaptation of Corynebacterium glutamicum to salt-stress conditions.
Fränzel B, Trötschel C, Rückert C, Kalinowski J, Poetsch A, Wolters DA., Proteomics 10(3), 2010
PMID: 19950167
Three paralogous LysR-type transcriptional regulators control sulfur amino acid supply in Streptococcus mutans.
Sperandio B, Gautier C, Pons N, Ehrlich DS, Renault P, Guédon E., J Bacteriol 192(13), 2010
PMID: 20418399
A comprehensive analysis of structural and sequence conservation in the TetR family transcriptional regulators.
Yu Z, Reichheld SE, Savchenko A, Parkinson J, Davidson AR., J Mol Biol 400(4), 2010
PMID: 20595046
Characterization of the LacI-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032.
Nentwich SS, Brinkrolf K, Gaigalat L, Hüser AT, Rey DA, Mohrbach T, Marin K, Pühler A, Tauch A, Kalinowski J., Microbiology 155(pt 1), 2009
PMID: 19118356
Regulation of ldh expression during biotin-limited growth of Corynebacterium glutamicum.
Dietrich C, Nato A, Bost B, Le Maréchal P, Guyonvarch A., Microbiology 155(pt 4), 2009
PMID: 19332837
CymR, the master regulator of cysteine metabolism in Staphylococcus aureus, controls host sulphur source utilization and plays a role in biofilm formation.
Soutourina O, Poupel O, Coppée JY, Danchin A, Msadek T, Martin-Verstraete I., Mol Microbiol 73(2), 2009
PMID: 19508281
Physiological adaptation of Corynebacterium glutamicum to benzoate as alternative carbon source - a membrane proteome-centric view.
Haussmann U, Qi SW, Wolters D, Rögner M, Liu SJ, Poetsch A., Proteomics 9(14), 2009
PMID: 19639586
DNA binding by Corynebacterium glutamicum TetR-type transcription regulator AmtR.
Muhl D, Jessberger N, Hasselt K, Jardin C, Sticht H, Burkovski A., BMC Mol Biol 10(), 2009
PMID: 19627583
Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis.
Follmann M, Ochrombel I, Krämer R, Trötschel C, Poetsch A, Rückert C, Hüser A, Persicke M, Seiferling D, Kalinowski J, Marin K., BMC Genomics 10(), 2009
PMID: 20025733
Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling.
Wang JX, Lee ER, Morales DR, Lim J, Breaker RR., Mol Cell 29(6), 2008
PMID: 18374645
Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine.
Wang JX, Breaker RR., Biochem Cell Biol 86(2), 2008
PMID: 18443629
Physiological response of Corynebacterium glutamicum to oxidative stress induced by deletion of the transcriptional repressor McbR.
Krömer JO, Bolten CJ, Heinzle E, Schröder H, Wittmann C., Microbiology 154(pt 12), 2008
PMID: 19047758
Initiation of actinorhodin export in Streptomyces coelicolor.
Tahlan K, Ahn SK, Sing A, Bodnaruk TD, Willems AR, Davidson AR, Nodwell JR., Mol Microbiol 63(4), 2007
PMID: 17338074
Characteristics of methionine production by an engineered Corynebacterium glutamicum strain.
Park SD, Lee JY, Sim SY, Kim Y, Lee HS., Metab Eng 9(4), 2007
PMID: 17604670
Transcriptionally regulated adhA gene encodes alcohol dehydrogenase required for ethanol and n-propanol utilization in Corynebacterium glutamicum R.
Kotrbova-Kozak A, Kotrba P, Inui M, Sajdok J, Yukawa H., Appl Microbiol Biotechnol 76(6), 2007
PMID: 17646983
CoryneCenter - an online resource for the integrated analysis of corynebacterial genome and transcriptome data.
Neuweger H, Baumbach J, Albaum S, Bekel T, Dondrup M, Hüser AT, Kalinowski J, Oehm S, Pühler A, Rahmann S, Weile J, Goesmann A., BMC Syst Biol 1(), 2007
PMID: 18034885
Emerging Corynebacterium glutamicum systems biology.
Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W., J Biotechnol 124(1), 2006
PMID: 16406159
CoryneRegNet: an ontology-based data warehouse of corynebacterial transcription factors and regulatory networks.
Baumbach J, Brinkrolf K, Czaja LF, Rahmann S, Tauch A., BMC Genomics 7(), 2006
PMID: 16478536
Global control of cysteine metabolism by CymR in Bacillus subtilis.
Even S, Burguière P, Auger S, Soutourina O, Danchin A, Martin-Verstraete I., J Bacteriol 188(6), 2006
PMID: 16513748
Survey of the year 2005 commercial optical biosensor literature.
Rich RL, Myszka DG., J Mol Recognit 19(6), 2006
PMID: 17125150
Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction.
Rückert C, Koch DJ, Rey DA, Albersmeier A, Mormann S, Pühler A, Kalinowski J., BMC Genomics 6(), 2005
PMID: 16159395
Regulation of AmtR-controlled gene expression in Corynebacterium glutamicum: mechanism and characterization of the AmtR regulon.
Beckers G, Strösser J, Hildebrandt U, Kalinowski J, Farwick M, Krämer R, Burkovski A., Mol Microbiol 58(2), 2005
PMID: 16194241
The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate.
Koch DJ, Rückert C, Albersmeier A, Hüser AT, Tauch A, Pühler A, Kalinowski J., Mol Microbiol 58(2), 2005
PMID: 16194234

52 References

Daten bereitgestellt von Europe PubMed Central.

The ENZYME data bank.
Bairoch A., Nucleic Acids Res. 21(13), 1993
PMID: 8332535
A multifunctional gene (tetR) controls Tn10-encoded tetracycline resistance.
Beck CF, Mutzel R, Barbe J, Muller W., J. Bacteriol. 150(2), 1982
PMID: 6279565

Cantoni, 1977
EMMA: a platform for consistent storage and efficient analysis of microarray data.
Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Puhler A, Meyer F., J. Biotechnol. 106(2-3), 2003
PMID: 14651856
Genetic and structural analysis of the Rhizobium meliloti fixA, fixB, fixC, and fixX genes.
Earl CD, Ronson CW, Ausubel FM., J. Bacteriol. 169(3), 1987
PMID: 3029021
Prediction of transcription terminators in bacterial genomes.
Ermolaeva MD, Khalak HG, White O, Smith HO, Salzberg SL., J. Mol. Biol. 301(1), 2000
PMID: 10926490
Organization and regulation of the Corynebacterium glutamicum hom-thrB and thrC loci.
Follettie MT, Shin HK, Sinskey AJ., Mol. Microbiol. 2(1), 1988
PMID: 2835590
An enzyme-coupled colorimetric assay for S-adenosylmethionine-dependent methyltransferases.
Hendricks CL, Ross JR, Pichersky E, Noel JP, Zhou ZS., Anal. Biochem. 326(1), 2004
PMID: 14769341
Industrial production of amino acids by coryneform bacteria.
Hermann T., J. Biotechnol. 104(1-3), 2003
PMID: 12948636
Mechanisms underlying expression of Tn10 encoded tetracycline resistance.
Hillen W, Berens C., Annu. Rev. Microbiol. 48(), 1994
PMID: 7826010
Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance.
Hinrichs W, Kisker C, Duvel M, Muller A, Tovar K, Hillen W, Saenger W., Science 264(5157), 1994
PMID: 8153629
Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source.
Huser AT, Becker A, Brune I, Dondrup M, Kalinowski J, Plassmeier J, Puhler A, Wiegrabe I, Tauch A., J. Biotechnol. 106(2-3), 2003
PMID: 14651867
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Protoplast transformation of glutamate-producing bacteria with plasmid DNA.
Katsumata R, Ozaki A, Oka T, Furuya A., J. Bacteriol. 159(1), 1984
PMID: 6145700
Properties of the Corynebacterium glutamicum metC gene encoding cystathionine beta-lyase.
Kim JW, Kim HJ, Kim Y, Lee MS, Lee HS., Mol. Cells 11(2), 2001
PMID: 11355704

Kredich, 1996

Leuchtenberger, 1996
The MtrR repressor binds the DNA sequence between the mtrR and mtrC genes of Neisseria gonorrhoeae.
Lucas CE, Balthazar JT, Hagman KE, Shafer WM., J. Bacteriol. 179(13), 1997
PMID: 9209024
Lack of S-adenosylmethionine results in a cell division defect in Escherichia coli.
Newman EB, Budman LI, Chan EC, Greene RC, Lin RT, Woldringh CL, D'Ari R., J. Bacteriol. 180(14), 1998
PMID: 9658005
Nucleotide sequence and fine structural analysis of the Corynebacterium glutamicum hom-thrB operon.
Peoples OP, Liebl W, Bodis M, Maeng PJ, Follettie MT, Archer JA, Sinskey AJ., Mol. Microbiol. 2(1), 1988
PMID: 2835591
Interactions of the Escherichia coli methionine repressor with the metF operator and with its corepressor, S-adenosylmethionine.
Saint-Girons I, Belfaiza J, Guillou Y, Perrin D, Guiso N, Barzu O, Cohen GN., J. Biol. Chem. 261(23), 1986
PMID: 3090041

Sambrook, 1989
Inhibition of transcription initiation by lac repressor.
Schlax PJ, Capp MW, Record MT Jr., J. Mol. Biol. 245(4), 1995
PMID: 7837267
Regulation of the methionine regulon in Escherichia coli.
Shoeman R, Redfield B, Coleman T, Brot N, Weissbach H, Greene RC, Smith AA, Saint-Girons I, Zakin MM, Cohen GN., Bioessays 3(5), 1985
PMID: 3916153
Isolation and characterization of the product of the methionine-regulatory gene metJ of Escherichia coli K-12.
Smith AA, Greene RC, Kirby TW, Hindenach BR., Proc. Natl. Acad. Sci. U.S.A. 82(18), 1985
PMID: 2994061
Dissecting the molecular details of prokaryotic transcriptional control by surface plasmon resonance: the methionine and arginine repressor proteins.
Stockley PG, Baron AJ, Wild CM, Parsons ID, Miller CM, Holtham CA, Baumberg S., Biosens Bioelectron 13(6), 1998
PMID: 9828358
Corynebacterium glutamicum DNA is subjected to methylation-restriction in Escherichia coli.
Tauch A, Kirchner O, Wehmeier L, Kalinowski J, Puhler A., FEMS Microbiol. Lett. 123(3), 1994
PMID: 7988915
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668
Strategy to sequence the genome of Corynebacterium glutamicum ATCC 13032: use of a cosmid and a bacterial artificial chromosome library.
Tauch A, Homann I, Mormann S, Ruberg S, Billault A, Bathe B, Brand S, Brockmann-Gretza O, Ruckert C, Schischka N, Wrenger C, Hoheisel J, Mockel B, Huthmacher K, Pfefferle W, Puhler A, Kalinowski J., J. Biotechnol. 95(1), 2002
PMID: 11879709
Metabolism of sulfur amino acids in Saccharomyces cerevisiae.
Thomas D, Surdin-Kerjan Y., Microbiol. Mol. Biol. Rev. 61(4), 1997
PMID: 9409150
Evolutionary relationships between sugar kinases and transcriptional repressors in bacteria.
Titgemeyer F, Reizer J, Reizer A, Saier MH Jr., Microbiology (Reading, Engl.) 140 ( Pt 9)(), 1994
PMID: 7952186
S-adenosylhomocysteine metabolism in various species.
Walker RD, Duerre JA., Can. J. Biochem. 53(3), 1975
PMID: 1125818

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 15853877
PubMed | Europe PMC

Suchen in

Google Scholar