Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources

Koch DJ, Rückert C, Rey DA, Mix A, Pühler A, Kalinowski J (2005)
APPLIED AND ENVIRONMENTAL MICROBIOLOGY 71(10): 6104-6114.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Corynebacterium glutamicum ATCC 13032 was found to be able to utilize a broad range of sulfonates and sulfonate esters as sulfur sources. The two gene clusters potentially involved in sulfonate utilization, ssuD1CBA and ssuI-seuABC-ssuD2, were identified in the genome of C. glutamicum ATCC 13032 by similarity searches. While the ssu genes encode proteins resembling Ssu proteins from Escherichia coli or Bacillus subtilis, the seu gene products exhibited similarity to the dibenzothiophene-degrading Dsz monooxygenases of Rhodococcus strain IGTS8. Growth tests with the C. glutamicum wild-type and appropriate mutant strains showed that the clustered genes ssuC, ssuB, and ssuA, putatively encoding the components of an ABC-type transporter system, are required for the utilization of aliphatic sulfonates. In C. glutamicum sulfonates are apparently degraded by sulfonatases encoded by ssuD1 and ssuD2. It was also found that the seu genes seuA, seuB, and seuC can effectively replace ssuD1 and ssuD2 for the degradation of sulfonate esters. The utilization of all sulfonates and sulfonate esters tested is dependent on a novel putative reductase encoded by ssuI. Obviously, all monooxygenases encoded by the ssu and seu genes, including SsuD1, SsuD2, SeuA, SeuB, and SeuC, which are reduced flavin mononucleotide dependent according to sequence similarity, have SsuI as an essential component. Using real-time reverse transcription-PCR, the ssu and seu gene cluster was found to be expressed considerably more strongly during growth on sulfonates and sulfonate esters than during growth on sulfate.
Erscheinungsjahr
2005
Zeitschriftentitel
APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Band
71
Ausgabe
10
Seite(n)
6104-6114
ISSN
0099-2240
Page URI
https://pub.uni-bielefeld.de/record/1602017

Zitieren

Koch DJ, Rückert C, Rey DA, Mix A, Pühler A, Kalinowski J. Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources. APPLIED AND ENVIRONMENTAL MICROBIOLOGY. 2005;71(10):6104-6114.
Koch, D. J., Rückert, C., Rey, D. A., Mix, A., Pühler, A., & Kalinowski, J. (2005). Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 71(10), 6104-6114. https://doi.org/10.1128/AEM.71.10.6104-6114.2005
Koch, DJ, Rückert, Christian, Rey, DA, Mix, Andreas, Pühler, Alfred, and Kalinowski, Jörn. 2005. “Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources”. APPLIED AND ENVIRONMENTAL MICROBIOLOGY 71 (10): 6104-6114.
Koch, D. J., Rückert, C., Rey, D. A., Mix, A., Pühler, A., and Kalinowski, J. (2005). Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources. APPLIED AND ENVIRONMENTAL MICROBIOLOGY 71, 6104-6114.
Koch, D.J., et al., 2005. Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 71(10), p 6104-6114.
D.J. Koch, et al., “Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources”, APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 71, 2005, pp. 6104-6114.
Koch, D.J., Rückert, C., Rey, D.A., Mix, A., Pühler, A., Kalinowski, J.: Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources. APPLIED AND ENVIRONMENTAL MICROBIOLOGY. 71, 6104-6114 (2005).
Koch, DJ, Rückert, Christian, Rey, DA, Mix, Andreas, Pühler, Alfred, and Kalinowski, Jörn. “Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources”. APPLIED AND ENVIRONMENTAL MICROBIOLOGY 71.10 (2005): 6104-6114.

18 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Arabitol metabolism of Corynebacterium glutamicum and its regulation by AtlR.
Laslo T, von Zaluskowski P, Gabris C, Lodd E, Rückert C, Dangel P, Kalinowski J, Auchter M, Seibold G, Eikmanns BJ., J Bacteriol 194(5), 2012
PMID: 22178972
Protein turnover quantification in a multilabeling approach: from data calculation to evaluation.
Trötschel C, Albaum SP, Wolff D, Schröder S, Goesmann A, Nattkemper TW, Poetsch A., Mol Cell Proteomics 11(8), 2012
PMID: 22493176
Global regulation of the response to sulfur availability in the cheese-related bacterium Brevibacterium aurantiacum.
Forquin MP, Hébert A, Roux A, Aubert J, Proux C, Heilier JF, Landaud S, Junot C, Bonnarme P, Martin-Verstraete I., Appl Environ Microbiol 77(4), 2011
PMID: 21169450
Advanced MudPIT as a next step toward high proteome coverage.
Fränzel B, Wolters DA., Proteomics 11(18), 2011
PMID: 21751368
Adaptation of Corynebacterium glutamicum to salt-stress conditions.
Fränzel B, Trötschel C, Rückert C, Kalinowski J, Poetsch A, Wolters DA., Proteomics 10(3), 2010
PMID: 19950167
Corynebacterium glutamicum exhibits a membrane-related response to a small ferrocene-conjugated antimicrobial peptide.
Fränzel B, Frese C, Penkova M, Metzler-Nolte N, Bandow JE, Wolters DA., J Biol Inorg Chem 15(8), 2010
PMID: 20658302
A combination of metabolome and transcriptome analyses reveals new targets of the Corynebacterium glutamicum nitrogen regulator AmtR.
Buchinger S, Strösser J, Rehm N, Hänssler E, Hans S, Bathe B, Schomburg D, Krämer R, Burkovski A., J Biotechnol 140(1-2), 2009
PMID: 19041910
Microarray studies reveal a 'differential response' to moderate or severe heat shock of the HrcA- and HspR-dependent systems in Corynebacterium glutamicum.
Barreiro C, Nakunst D, Hüser AT, de Paz HD, Kalinowski J, Martín JF., Microbiology 155(pt 2), 2009
PMID: 19202085
Physiological adaptation of Corynebacterium glutamicum to benzoate as alternative carbon source - a membrane proteome-centric view.
Haussmann U, Qi SW, Wolters D, Rögner M, Liu SJ, Poetsch A., Proteomics 9(14), 2009
PMID: 19639586
Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction.
Rückert C, Koch DJ, Rey DA, Albersmeier A, Mormann S, Pühler A, Kalinowski J., BMC Genomics 6(), 2005
PMID: 16159395

37 References

Daten bereitgestellt von Europe PubMed Central.

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
Sulfonate S: a major form of forest soil organic sulfur.
Autry AR, Fitzgerald JW., Biol. Fertil. Soils 10(1), 1990
PMID: IND91003414
The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000.
Bairoch A, Apweiler R., Nucleic Acids Res. 28(1), 2000
PMID: 10592178

AUTHOR UNKNOWN, 1999
Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8.
Denome SA, Oldfield C, Nash LJ, Young KD., J. Bacteriol. 176(21), 1994
PMID: 7961424
Crystal structure of Escherichia coli alkanesulfonate monooxygenase SsuD.
Eichhorn E, Davey CA, Sargent DF, Leisinger T, Richmond TJ., J. Mol. Biol. 324(3), 2002
PMID: 12445781
Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli.
Eichhorn E, van der Ploeg JR, Leisinger T., J. Biol. Chem. 274(38), 1999
PMID: 10480865
Deletion analysis of the Escherichia coli taurine and alkanesulfonate transport systems.
Eichhorn E, van der Ploeg JR, Leisinger T., J. Bacteriol. 182(10), 2000
PMID: 10781534
Prediction of transcription terminators in bacterial genomes.
Ermolaeva MD, Khalak HG, White O, Smith HO, Salzberg SL., J. Mol. Biol. 301(1), 2000
PMID: 10926490

AUTHOR UNKNOWN, 1995
Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants.
Grant SG, Jessee J, Bloom FR, Hanahan D., Proc. Natl. Acad. Sci. U.S.A. 87(12), 1990
PMID: 2162051
Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension.
Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR., Gene 77(1), 1989
PMID: 2744488
Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source.
Huser AT, Becker A, Brune I, Dondrup M, Kalinowski J, Plassmeier J, Puhler A, Wiegrabe I, Tauch A., J. Biotechnol. 106(2-3), 2003
PMID: 14651867
The ssu locus plays a key role in organosulfur metabolism in Pseudomonas putida S-313.
Kahnert A, Vermeij P, Wietek C, James P, Leisinger T, Kertesz MA., J. Bacteriol. 182(10), 2000
PMID: 10781557
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626

AUTHOR UNKNOWN, 1999

AUTHOR UNKNOWN, 1999

AUTHOR UNKNOWN, 1957

AUTHOR UNKNOWN, 1991
CD-Search: protein domain annotations on the fly.
Marchler-Bauer A, Bryant SH., Nucleic Acids Res. 32(Web Server issue), 2004
PMID: 15215404

AUTHOR UNKNOWN, 1983
Elucidation of the metabolic pathway for dibenzothiophene desulphurization by Rhodococcus sp. strain IGTS8 (ATCC 53968).
Oldfield C, Pogrebinsky O, Simmonds J, Olson ES, Kulpa CF., Microbiology (Reading, Engl.) 143 ( Pt 9)(), 1997
PMID: 9308179

AUTHOR UNKNOWN, 2001

AUTHOR UNKNOWN, 1989
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668
Identification of sulfate starvation-regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source.
van der Ploeg JR, Weiss MA, Saller E, Nashimoto H, Saito N, Kertesz MA, Leisinger T., J. Bacteriol. 178(18), 1996
PMID: 8808933
Sulfonate-sulfur metabolism and its regulation in Escherichia coli.
van der Ploeg JR, Eichhorn E, Leisinger T., Arch. Microbiol. 176(1-2), 2001
PMID: 11479697
The Escherichia coli ssuEADCB gene cluster is required for the utilization of sulfur from aliphatic sulfonates and is regulated by the transcriptional activator Cbl.
van Der Ploeg JR, Iwanicka-Nowicka R, Bykowski T, Hryniewicz MM, Leisinger T., J. Biol. Chem. 274(41), 1999
PMID: 10506196
Bacillus subtilis genes for the utilization of sulfur from aliphatic sulfonates.
van der Ploeg JR, Cummings NJ, Leisinger T, Connerton IF., Microbiology (Reading, Engl.) 144 ( Pt 9)(), 1998
PMID: 9782504
Genetic organization of sulphur-controlled aryl desulphonation in Pseudomonas putida S-313.
Vermeij P, Wietek C, Kahnert A, Wuest T, Kertesz MA., Mol. Microbiol. 32(5), 1999
PMID: 10361295
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 16204527
PubMed | Europe PMC

Suchen in

Google Scholar