Spectral contrasts for landmark navigation

Kollmeier T, Röben F, Schenck W, Möller R (2007)
Journal of the Optical Society of America A: Optics, Image Science & Vision 24(1): 1-10.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
Visual robot navigation in outdoor environments would benefit from an illumination-independent representation of images. We explore how such a representation, comprising a black skyline of objects in front of a white sky, can be obtained from dual-channel spectral contrast measures. Light from sky and natural objects under different conditions of illumination was analyzed by five spectral channels: ultraviolet, blue, green, red, and near infrared. Linear discriminant analysis was applied to determine the optimal linear separation between sky and object points. A statistical comparison shows that contrasts with large differences in the wavelength of the two channels, specifically ultraviolet-infrared, blue-infrared, and ultraviolet-red, yield the best separation. Within a single channel, the best separation was obtained for ultraviolet light. The gain in separation quality when all five channels were included is relatively small. (c) 2006 Optical Society of America.
Erscheinungsjahr
Zeitschriftentitel
Journal of the Optical Society of America A: Optics, Image Science & Vision
Band
24
Ausgabe
1
Seite(n)
1-10
ISSN
eISSN
PUB-ID

Zitieren

Kollmeier T, Röben F, Schenck W, Möller R. Spectral contrasts for landmark navigation. Journal of the Optical Society of America A: Optics, Image Science & Vision. 2007;24(1):1-10.
Kollmeier, T., Röben, F., Schenck, W., & Möller, R. (2007). Spectral contrasts for landmark navigation. Journal of the Optical Society of America A: Optics, Image Science & Vision, 24(1), 1-10. doi:10.1364/JOSAA.24.000001
Kollmeier, T., Röben, F., Schenck, W., and Möller, R. (2007). Spectral contrasts for landmark navigation. Journal of the Optical Society of America A: Optics, Image Science & Vision 24, 1-10.
Kollmeier, T., et al., 2007. Spectral contrasts for landmark navigation. Journal of the Optical Society of America A: Optics, Image Science & Vision, 24(1), p 1-10.
T. Kollmeier, et al., “Spectral contrasts for landmark navigation”, Journal of the Optical Society of America A: Optics, Image Science & Vision, vol. 24, 2007, pp. 1-10.
Kollmeier, T., Röben, F., Schenck, W., Möller, R.: Spectral contrasts for landmark navigation. Journal of the Optical Society of America A: Optics, Image Science & Vision. 24, 1-10 (2007).
Kollmeier, Thomas, Röben, Frank, Schenck, Wolfram, and Möller, Ralf. “Spectral contrasts for landmark navigation”. Journal of the Optical Society of America A: Optics, Image Science & Vision 24.1 (2007): 1-10.

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The problem of home choice in skyline-based homing.
Müller MM, Bertrand OJN, Differt D, Egelhaaf M., PLoS One 13(3), 2018
PMID: 29522546
Regional differences in the preferred e-vector orientation of honeybee ocellar photoreceptors.
Ogawa Y, Ribi W, Zeil J, Hemmi JM., J Exp Biol 220(pt 9), 2017
PMID: 28213397
Skyline retention and retroactive interference in the navigating Australian desert ant, Melophorus bagoti.
Freas CA, Whyte C, Cheng K., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 203(5), 2017
PMID: 28447200
Spectral Skyline Separation: Extended Landmark Databases and Panoramic Imaging.
Differt D, Möller R., Sensors (Basel) 16(10), 2016
PMID: 27690053

25 References

Daten bereitgestellt von Europe PubMed Central.


Vardy, Connection Science 17(), 2005
Catchment areas of panoramic snapshots in outdoor scenes.
Zeil J, Hofmann MI, Chahl JS., J Opt Soc Am A Opt Image Sci Vis 20(3), 2003
PMID: 12630831

Franz, Rob. Auton. Syst. 30(), 2000

Cartwright, J. Comp. Physiol., A 151(), 1983

Franz, Auton. Rob. 5(), 1998
Insects could exploit UV-green contrast for Landmark navigation.
Moller R., J. Theor. Biol. 214(4), 2002
PMID: 11851371

Wilson, J. Comp. Physiol. 124(), 1978

Wehner, Neujahrsblatt der Naturforschenden Gesellschaft Zürich 184(), 1982

Ricchiazzi, Bull. Am. Meteorol. Soc. 79(), 1998

Peitsch, J. Comp. Physiol., A 170(), 1992

Chittka, Naturwiss. 83(), 1996
The evolution of color vision in insects.
Briscoe AD, Chittka L., Annu. Rev. Entomol. 46(), 2001
PMID: 11112177

Labhart, Nature 331(), 1988

Lambrinos, Adaptive Behav. 6(), 1997

Lambrinos, Rob. Auton. Syst. 30(), 2000

Maximov, Philos. Trans. R. Soc. London, Ser. B 355(), 2000

Shimohigashi, Cell Tissue Res. 263(), 1991
Ovipositing butterflies use a red receptor to see green
Kelber A., J. Exp. Biol. 202 (Pt 19)(), 1999
PMID: 10482721

Cartwright, Biol. Cybern. 57(), 1987

Rossel, J. Comp. Physiol., A 155(), 1984

Stange, J. Comp. Physiol., A 188(), 2002
Bioinspired engineering of exploration systems for NASA and DoD.
Thakoor S, Chahl J, Srinivasan MV, Young L, Werblin F, Hine B, Zornetzer S., Artif. Life 8(4), 2002
PMID: 12650645

Chahl, J. Rob. Syst. 20(), 2003

Sauseng, Eur. J. Entomo. 100(), 2003

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 17164837
PubMed | Europe PMC

Suchen in

Google Scholar