The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes

Nakunst D, Larisch C, Hueser AT, Tauch A, Pühler A, Kalinowski J (2007)
JOURNAL OF BACTERIOLOGY 189(13): 4696-4707.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Nakunst, Diana; Larisch, Christof; Hueser, Andrea T.; Tauch, AndreasUniBi; Pühler, AlfredUniBi ; Kalinowski, JörnUniBi
Abstract / Bemerkung
The gene for the extracytoplasmic function (ECF) sigma factor SigM was deleted from the chromosome of the gram-positive soil bacterium Corynebacterium glutamicum to elucidate the role of the SigM protein in the regulation of gene expression. Comparative DNA microarray hybridizations of the C. glutamicum wild type and sigM-deficient mutant C. glutamicum DNI revealed 23 genes with enhanced expression in the sigM-proficient strain, encoding functions in the assembly of iron-sulfur clusters (suf operon), thioredoxin reductase (trxB), thioredoxins (trxC, trxB1), chaperones (groES, groEL, clpB), and proteins involved in the heat shock response (hspR, dnaJ, grpE). Deletion of the sigM gene rendered the C. glutamicum cells more sensitive to heat, cold, and the presence of the thiol oxidant diamide. Transcription of the sigM gene increased under different stress conditions, including heat shock, cold shock, and disulfide stress caused by diamide treatment, suggesting a regulatory role for SigM under thiol-oxidative stress conditions. Stress-responsive promoters were determined upstream of the suf operon and of the trxB, trxC, and trxB1 genes. The deduced SigM consensus promoter is characterized by the - 35 hexamer gGGAAT and the - 10 hexamer YGTTGR. Transcription of the sigM gene is apparently controlled by the ECF sigma factor SigH, since a sigH mutant was unable to enhance the expression of sigM and the SigM regulon under thioloxidative stress conditions. A typical SigH-responsive promoter was mapped upstream of the sigM gene. The ECF sigma factor SigM is apparently part of a regulatory cascade, and its transcription is controlled by SigH under conditions of thiol-oxidative stress.
Erscheinungsjahr
2007
Zeitschriftentitel
JOURNAL OF BACTERIOLOGY
Band
189
Ausgabe
13
Seite(n)
4696-4707
ISSN
0021-9193
Page URI
https://pub.uni-bielefeld.de/record/1593371

Zitieren

Nakunst D, Larisch C, Hueser AT, Tauch A, Pühler A, Kalinowski J. The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes. JOURNAL OF BACTERIOLOGY. 2007;189(13):4696-4707.
Nakunst, D., Larisch, C., Hueser, A. T., Tauch, A., Pühler, A., & Kalinowski, J. (2007). The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes. JOURNAL OF BACTERIOLOGY, 189(13), 4696-4707. https://doi.org/10.1128/JB.00382-07
Nakunst, Diana, Larisch, Christof, Hueser, Andrea T., Tauch, Andreas, Pühler, Alfred, and Kalinowski, Jörn. 2007. “The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes”. JOURNAL OF BACTERIOLOGY 189 (13): 4696-4707.
Nakunst, D., Larisch, C., Hueser, A. T., Tauch, A., Pühler, A., and Kalinowski, J. (2007). The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes. JOURNAL OF BACTERIOLOGY 189, 4696-4707.
Nakunst, D., et al., 2007. The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes. JOURNAL OF BACTERIOLOGY, 189(13), p 4696-4707.
D. Nakunst, et al., “The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes”, JOURNAL OF BACTERIOLOGY, vol. 189, 2007, pp. 4696-4707.
Nakunst, D., Larisch, C., Hueser, A.T., Tauch, A., Pühler, A., Kalinowski, J.: The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes. JOURNAL OF BACTERIOLOGY. 189, 4696-4707 (2007).
Nakunst, Diana, Larisch, Christof, Hueser, Andrea T., Tauch, Andreas, Pühler, Alfred, and Kalinowski, Jörn. “The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes”. JOURNAL OF BACTERIOLOGY 189.13 (2007): 4696-4707.

38 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Overlap of Promoter Recognition Specificity of Stress Response Sigma Factors SigD and SigH in Corynebacterium glutamicum ATCC 13032.
Dostálová H, Busche T, Holátko J, Rucká L, Štěpánek V, Barvík I, Nešvera J, Kalinowski J, Pátek M., Front Microbiol 9(), 2018
PMID: 30687273
Assignment of sigma factors of RNA polymerase to promoters in Corynebacterium glutamicum.
Dostálová H, Holátko J, Busche T, Rucká L, Rapoport A, Halada P, Nešvera J, Kalinowski J, Pátek M., AMB Express 7(1), 2017
PMID: 28651382
Regulons of global transcription factors in Corynebacterium glutamicum.
Toyoda K, Inui M., Appl Microbiol Biotechnol 100(1), 2016
PMID: 26496920
Use of In Vitro Transcription System for Analysis of Corynebacterium glutamicum Promoters Recognized by Two Sigma Factors.
Šilar R, Holátko J, Rucká L, Rapoport A, Dostálová H, Kadeřábková P, Nešvera J, Pátek M., Curr Microbiol 73(3), 2016
PMID: 27270733
Thiol-based redox switches in prokaryotes.
Hillion M, Antelmann H., Biol Chem 396(5), 2015
PMID: 25720121
Differential transcriptional profile of Corynebacterium pseudotuberculosis in response to abiotic stresses.
Pinto AC, de Sá PH, Ramos RT, Barbosa S, Barbosa HP, Ribeiro AC, Silva WM, Rocha FS, Santana MP, de Paula Castro TL, Miyoshi A, Schneider MP, Silva A, Azevedo V., BMC Genomics 15(), 2014
PMID: 24405787
σ(ECF) factors of gram-positive bacteria: a focus on Bacillus subtilis and the CMNR group.
Souza BM, Castro TL, Carvalho RD, Seyffert N, Silva A, Miyoshi A, Azevedo V., Virulence 5(5), 2014
PMID: 24921931
Corynebacterium glutamicum promoters: a practical approach.
Pátek M, Holátko J, Busche T, Kalinowski J, Nešvera J., Microb Biotechnol 6(2), 2013
PMID: 23305350
Regulatory interaction of the Corynebacterium glutamicum whc genes in oxidative stress responses.
Lee JY, Kim HJ, Kim ES, Kim P, Kim Y, Lee HS., J Biotechnol 168(2), 2013
PMID: 23608553
Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032.
Mentz A, Neshat A, Pfeifer-Sancar K, Pühler A, Rückert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24138339
Protein turnover quantification in a multilabeling approach: from data calculation to evaluation.
Trötschel C, Albaum SP, Wolff D, Schröder S, Goesmann A, Nattkemper TW, Poetsch A., Mol Cell Proteomics 11(8), 2012
PMID: 22493176
Identification of iron-regulated genes of Bifidobacterium breve UCC2003 as a basis for controlled gene expression.
Cronin M, Zomer A, Fitzgerald GF, van Sinderen D., Bioeng Bugs 3(3), 2012
PMID: 22179149
Construction of in vitro transcription system for Corynebacterium glutamicum and its use in the recognition of promoters of different classes.
Holátko J, Silar R, Rabatinová A, Sanderová H, Halada P, Nešvera J, Krásný L, Pátek M., Appl Microbiol Biotechnol 96(2), 2012
PMID: 22885668
Tools for genetic manipulations in Corynebacterium glutamicum and their applications.
Nešvera J, Pátek M., Appl Microbiol Biotechnol 90(5), 2011
PMID: 21519933
Determinants of redox sensitivity in RsrA, a zinc-containing anti-sigma factor for regulating thiol oxidative stress response.
Jung YG, Cho YB, Kim MS, Yoo JS, Hong SH, Roe JH., Nucleic Acids Res 39(17), 2011
PMID: 21685450
Factors enhancing L-valine production by the growth-limited L-isoleucine auxotrophic strain Corynebacterium glutamicum DeltailvA DeltapanB ilvNM13 (pECKAilvBNC).
Denina I, Paegle L, Prouza M, Holátko J, Pátek M, Nesvera J, Ruklisha M., J Ind Microbiol Biotechnol 37(7), 2010
PMID: 20364396
EMMA 2--a MAGE-compliant system for the collaborative analysis and integration of microarray data.
Dondrup M, Albaum SP, Griebel T, Henckel K, Jünemann S, Kahlke T, Kleindt CK, Küster H, Linke B, Mertens D, Mittard-Runte V, Neuweger H, Runte KJ, Tauch A, Tille F, Pühler A, Goesmann A., BMC Bioinformatics 10(), 2009
PMID: 19200358
A game with many players: control of gdh transcription in Corynebacterium glutamicum.
Hänssler E, Müller T, Palumbo K, Patek M, Brocker M, Krämer R, Burkovski A., J Biotechnol 142(2), 2009
PMID: 19394370
The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) sigma factor protein family.
Staroń A, Sofia HJ, Dietrich S, Ulrich LE, Liesegang H, Mascher T., Mol Microbiol 74(3), 2009
PMID: 19737356
Global gene expression mediated by Thermus thermophilus SdrP, a CRP/FNR family transcriptional regulator.
Agari Y, Kashihara A, Yokoyama S, Kuramitsu S, Shinkai A., Mol Microbiol 70(1), 2008
PMID: 18699868

69 References

Daten bereitgestellt von Europe PubMed Central.

CoryneRegNet: an ontology-based data warehouse of corynebacterial transcription factors and regulatory networks.
Baumbach J, Brinkrolf K, Czaja LF, Rahmann S, Tauch A., BMC Genomics 7(), 2006
PMID: 16478536
Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme.
Berkovitch F, Nicolet Y, Wan JT, Jarrett JT, Drennan CL., Science 303(5654), 2004
PMID: 14704425
Reassessment of protein stability, DNA binding, and protection of Mycobacterium smegmatis Dps.
Ceci P, Ilari A, Falvo E, Giangiacomo L, Chiancone E., J. Biol. Chem. 280(41), 2005
PMID: 16030020
Bacterial RNA polymerase.
Darst SA., Curr. Opin. Struct. Biol. 11(2), 2001
PMID: 11297923
Identification of a novel peptidoglycan hydrolase CwlM in Mycobacterium tuberculosis.
Deng LL, Humphries DE, Arbeit RD, Carlton LE, Smole SC, Carroll JD., Biochim. Biophys. Acta 1747(1), 2004
PMID: 15680239
EMMA: a platform for consistent storage and efficient analysis of microarray data.
Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Puhler A, Meyer F., J. Biotechnol. 106(2-3), 2003
PMID: 14651856
Prediction of transcription terminators in bacterial genomes.
Ermolaeva MD, Khalak HG, White O, Smith HO, Salzberg SL., J. Mol. Biol. 301(1), 2000
PMID: 10926490
A mycobacterial extracytoplasmic sigma factor involved in survival following heat shock and oxidative stress.
Fernandes ND, Wu QL, Kong D, Puyang X, Garg S, Husson RN., J. Bacteriol. 181(14), 1999
PMID: 10400584
Biosynthesis of iron-sulphur clusters is a complex and highly conserved process.
Frazzon J, Fick JR, Dean DR., Biochem. Soc. Trans. 30(4), 2002
PMID: 12196163
Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants.
Grant SG, Jessee J, Bloom FR, Hanahan D., Proc. Natl. Acad. Sci. U.S.A. 87(12), 1990
PMID: 2162051
Structure and function of bacterial sigma factors.
Helmann JD, Chamberlin MJ., Annu. Rev. Biochem. 57(), 1988
PMID: 3052291
Anti-sigma factors.
Helmann JD., Curr. Opin. Microbiol. 2(2), 1999
PMID: 10322161
The extracytoplasmic function (ECF) sigma factors.
Helmann JD., Adv. Microb. Physiol. 46(), 2002
PMID: 12073657
Industrial production of amino acids by coryneform bacteria.
Hermann T., J. Biotechnol. 104(1-3), 2003
PMID: 12948636
Thioredoxin.
Holmgren A., Annu. Rev. Biochem. 54(), 1985
PMID: 3896121
The anti-sigma factors.
Hughes KT, Mathee K., Annu. Rev. Microbiol. 52(), 1998
PMID: 9891799
Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source.
Huser AT, Becker A, Brune I, Dondrup M, Kalinowski J, Plassmeier J, Puhler A, Wiegrabe I, Tauch A., J. Biotechnol. 106(2-3), 2003
PMID: 14651867
The Corynebacterium glutamicum genome: features and impacts on biotechnological processes.
Ikeda M, Nakagawa S., Appl. Microbiol. Biotechnol. 62(2-3), 2003
PMID: 12743753
Iron-sulphur clusters and the problem with oxygen.
Imlay JA., Mol. Microbiol. 59(4), 2006
PMID: 16430685
Structure, function, and formation of biological iron-sulfur clusters.
Johnson DC, Dean DR, Smith AD, Johnson MK., Annu. Rev. Biochem. 74(), 2005
PMID: 15952888
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
RsrA, an anti-sigma factor regulated by redox change.
Kang JG, Paget MS, Seok YJ, Hahn MY, Bae JB, Hahn JS, Kleanthous C, Buttner MJ, Roe JH., EMBO J. 18(15), 1999
PMID: 10428967
Protoplast transformation of glutamate-producing bacteria with plasmid DNA.
Katsumata R, Ozaki A, Oka T, Furuya A., J. Bacteriol. 159(1), 1984
PMID: 6145700
Reduced immunopathology and mortality despite tissue persistence in a Mycobacterium tuberculosis mutant lacking alternative sigma factor, SigH.
Kaushal D, Schroeder BG, Tyagi S, Yoshimatsu T, Scott C, Ko C, Carpenter L, Mehrotra J, Manabe YC, Fleischmann RD, Bishai WR., Proc. Natl. Acad. Sci. U.S.A. 99(12), 2002
PMID: 12060776
Functional analysis of sigH expression in Corynebacterium glutamicum.
Kim TH, Kim HJ, Park JS, Kim Y, Kim P, Lee HS., Biochem. Biophys. Res. Commun. 331(4), 2005
PMID: 15883048
The whcE gene of Corynebacterium glutamicum is important for survival following heat and oxidative stress.
Kim TH, Park JS, Kim HJ, Kim Y, Kim P, Lee HS., Biochem. Biophys. Res. Commun. 337(3), 2005
PMID: 16212936
The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate.
Koch DJ, Ruckert C, Albersmeier A, Huser AT, Tauch A, Puhler A, Kalinowski J., Mol. Microbiol. 58(2), 2005
PMID: 16194234
Global characterization of disulfide stress in Bacillus subtilis.
Leichert LI, Scharf C, Hecker M., J. Bacteriol. 185(6), 2003
PMID: 12618461
Biotechnological production of amino acids and derivatives: current status and prospects.
Leuchtenberger W, Huthmacher K, Drauz K., Appl. Microbiol. Biotechnol. 69(1), 2005
PMID: 16195792
The sigma 70 family: sequence conservation and evolutionary relationships.
Lonetto M, Gribskov M, Gross CA., J. Bacteriol. 174(12), 1992
PMID: 1597408
Role of the extracytoplasmic-function sigma factor sigma(H) in Mycobacterium tuberculosis global gene expression.
Manganelli R, Voskuil MI, Schoolnik GK, Dubnau E, Gomez M, Smith I., Mol. Microbiol. 45(2), 2002
PMID: 12123450
Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose.
Muffler A, Bettermann S, Haushalter M, Horlein A, Neveling U, Schramm M, Sorgenfrei O., J. Biotechnol. 98(2-3), 2002
PMID: 12141991
SoxR-dependent response to oxidative stress and virulence of Erwinia chrysanthemi: the key role of SufC, an orphan ABC ATPase.
Nachin L, El Hassouni M, Loiseau L, Expert D, Barras F., Mol. Microbiol. 39(4), 2001
PMID: 11251816
SufC: an unorthodox cytoplasmic ABC/ATPase required for [Fe-S] biogenesis under oxidative stress.
Nachin L, Loiseau L, Expert D, Barras F., EMBO J. 22(3), 2003
PMID: 12554644
Multiple sigma factor genes in Brevibacterium lactofermentum: characterization of sigA and sigB.
Oguiza JA, Marcos AT, Malumbres M, Martin JF., J. Bacteriol. 178(2), 1996
PMID: 8550480

AUTHOR UNKNOWN, 1998
Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the sigmaR regulon.
Paget MS, Molle V, Cohen G, Aharonowitz Y, Buttner MJ., Mol. Microbiol. 42(4), 2001
PMID: 11737643
Promoters of Corynebacterium glutamicum.
Patek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G., J. Biotechnol. 104(1-3), 2003
PMID: 12948648

AUTHOR UNKNOWN, 1989
Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth.
Steyn AJ, Collins DM, Hondalus MK, Jacobs WR Jr, Kawakami RP, Bloom BR., Proc. Natl. Acad. Sci. U.S.A. 99(5), 2002
PMID: 11880648
Oxidative stress.
Storz G, Imlay JA., Curr. Opin. Microbiol. 2(2), 1999
PMID: 10322176
Corynebacterium glutamicum DNA is subjected to methylation-restriction in Escherichia coli.
Tauch A, Kirchner O, Wehmeier L, Kalinowski J, Puhler A., FEMS Microbiol. Lett. 123(3), 1994
PMID: 7988915
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668
The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG., Nucleic Acids Res. 25(24), 1997
PMID: 9396791
Mycothiol-dependent mycobacterial response to oxidative stress.
Ung KS, Av-Gay Y., FEBS Lett. 580(11), 2006
PMID: 16643903
How high G+C Gram-positive bacteria and in particular bifidobacteria cope with heat stress: protein players and regulators.
Ventura M, Canchaya C, Zhang Z, Bernini V, Fitzgerald GF, van Sinderen D., FEMS Microbiol. Rev. 30(5), 2006
PMID: 16911042
Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis.
Zheng L, White RH, Cash VL, Jack RF, Dean DR., Proc. Natl. Acad. Sci. U.S.A. 90(7), 1993
PMID: 8464885
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 17483229
PubMed | Europe PMC

Suchen in

Google Scholar