The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences

Brinkrolf K, Ploeger S, Solle S, Brune I, Nentwich SS, Hueser AT, Kalinowski J, Pühler A, Tauch A (2008)
MICROBIOLOGY 154(4): 1068-1081.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Brinkrolf, KarinaUniBi; Ploeger, Svenja; Solle, Sandra; Brune, IrisUniBi; Nentwich, Svenia S.; Hueser, Andrea T.; Kalinowski, JörnUniBi; Pühler, AlfredUniBi ; Tauch, AndreasUniBi
Abstract / Bemerkung
The Cg1547 protein of Corynebacterium glutamicum ATCC 13032 is a member of the LacI/GalR family of DNA-binding transcriptional regulators. A defined deletion in the cg1547 gene, now designated uriR (uridine utilization regulator), resulted in the mutant strain C. glutamicum KB1547. Comparison of gene expression levels in C. glutamicum KB1547 and the wild-type strain revealed enhanced expression of the uriR operon genes cg1546 (ribokinase), cg1545 (uridine transporter) and cg1543 (uridine-pref erring nucleoside hydrolase). Gene expression of the uriR operon was stimulated by the presence of either uridine or ribose. Growth assays with C. glutamicum mutants showed that functional Cg 1543 and Cg 1545 proteins are essential for the utilization of uridine as the sole carbon source. Transcriptional regulation of the uriR operon is mediated by a 29 bp palindromic sequence composed of two catabolite-responsive element (cre)-like sequences and located in between the mapped -10 promoter region and the start codon of uriR. A similar cre sequence was detected in the upstream region of rbsK2 (cg2554), coding for a second ribokinase in C. glutamicum ATCC 13032. DNA band-shift assays with a streptavidin-tagged UriR protein and labelled oligonucleotides including the cre-like sequences of uriR and rbsK2 demonstrated the specific binding of the purified regulator in vitro. Whole-genome DNA microarray hybridizations comparing the gene expression in C. glutamicum KB1547 with that of the wild-type strain revealed that UriR is a pathway-specific repressor of genes involved in uridine utilization in C. glutamicum.
Erscheinungsjahr
2008
Zeitschriftentitel
MICROBIOLOGY
Band
154
Ausgabe
4
Seite(n)
1068-1081
ISSN
1350-0872
eISSN
1465-2080
Page URI
https://pub.uni-bielefeld.de/record/1588078

Zitieren

Brinkrolf K, Ploeger S, Solle S, et al. The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences. MICROBIOLOGY. 2008;154(4):1068-1081.
Brinkrolf, K., Ploeger, S., Solle, S., Brune, I., Nentwich, S. S., Hueser, A. T., Kalinowski, J., et al. (2008). The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences. MICROBIOLOGY, 154(4), 1068-1081. https://doi.org/10.1099/mic.0.2007/014001-0
Brinkrolf, Karina, Ploeger, Svenja, Solle, Sandra, Brune, Iris, Nentwich, Svenia S., Hueser, Andrea T., Kalinowski, Jörn, Pühler, Alfred, and Tauch, Andreas. 2008. “The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences”. MICROBIOLOGY 154 (4): 1068-1081.
Brinkrolf, K., Ploeger, S., Solle, S., Brune, I., Nentwich, S. S., Hueser, A. T., Kalinowski, J., Pühler, A., and Tauch, A. (2008). The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences. MICROBIOLOGY 154, 1068-1081.
Brinkrolf, K., et al., 2008. The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences. MICROBIOLOGY, 154(4), p 1068-1081.
K. Brinkrolf, et al., “The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences”, MICROBIOLOGY, vol. 154, 2008, pp. 1068-1081.
Brinkrolf, K., Ploeger, S., Solle, S., Brune, I., Nentwich, S.S., Hueser, A.T., Kalinowski, J., Pühler, A., Tauch, A.: The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences. MICROBIOLOGY. 154, 1068-1081 (2008).
Brinkrolf, Karina, Ploeger, Svenja, Solle, Sandra, Brune, Iris, Nentwich, Svenia S., Hueser, Andrea T., Kalinowski, Jörn, Pühler, Alfred, and Tauch, Andreas. “The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences”. MICROBIOLOGY 154.4 (2008): 1068-1081.

13 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Corynebacterium glutamicum as a potent biocatalyst for the bioconversion of pentose sugars to value-added products.
Gopinath V, Murali A, Dhar KS, Nampoothiri KM., Appl Microbiol Biotechnol 93(1), 2012
PMID: 22094976
Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient.
Schröder J, Maus I, Meyer K, Wördemann S, Blom J, Jaenicke S, Schneider J, Trost E, Tauch A., BMC Genomics 13(), 2012
PMID: 22524407
Global transcriptome response in Lactobacillus sakei during growth on ribose.
McLeod A, Snipen L, Naterstad K, Axelsson L., BMC Microbiol 11(), 2011
PMID: 21702908
Two nucleoside transporters in Lactococcus lactis with different substrate specificities.
Martinussen J, Sørensen C, Jendresen CB, Kilstrup M., Microbiology 156(pt 10), 2010
PMID: 20595258
SUPERFAMILY--sophisticated comparative genomics, data mining, visualization and phylogeny.
Wilson D, Pethica R, Zhou Y, Talbot C, Vogel C, Madera M, Chothia C, Gough J., Nucleic Acids Res 37(database issue), 2009
PMID: 19036790
Characterization of the LacI-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032.
Nentwich SS, Brinkrolf K, Gaigalat L, Hüser AT, Rey DA, Mohrbach T, Marin K, Pühler A, Tauch A, Kalinowski J., Microbiology 155(pt 1), 2009
PMID: 19118356
EMMA 2--a MAGE-compliant system for the collaborative analysis and integration of microarray data.
Dondrup M, Albaum SP, Griebel T, Henckel K, Jünemann S, Kahlke T, Kleindt CK, Küster H, Linke B, Mertens D, Mittard-Runte V, Neuweger H, Runte KJ, Tauch A, Tille F, Pühler A, Goesmann A., BMC Bioinformatics 10(), 2009
PMID: 19200358

53 References

Daten bereitgestellt von Europe PubMed Central.

CoryneRegNet: an ontology-based data warehouse of corynebacterial transcription factors and regulatory networks.
Baumbach J, Brinkrolf K, Czaja LF, Rahmann S, Tauch A., BMC Genomics 7(), 2006
PMID: 16478536
The transcriptional regulatory network of the amino acid producer Corynebacterium glutamicum.
Brinkrolf K, Brune I, Tauch A., J. Biotechnol. 129(2), 2006
PMID: 17227685
The IclR-type transcriptional repressor LtbR regulates the expression of leucine and tryptophan biosynthesis genes in the amino acid producer Corynebacterium glutamicum.
Brune I, Jochmann N, Brinkrolf K, Huser AT, Gerstmeir R, Eikmanns BJ, Kalinowski J, Puhler A, Tauch A., J. Bacteriol. 189(7), 2007
PMID: 17259312
Structural analysis of lac repressor bound to allosteric effectors.
Daber R, Stayrook S, Rosenberg A, Lewis M., J. Mol. Biol. 370(4), 2007
PMID: 17543986
EMMA: a platform for consistent storage and efficient analysis of microarray data.
Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Puhler A, Meyer F., J. Biotechnol. 106(2-3), 2003
PMID: 14651856
Dimerisation mutants of Lac repressor. I. A monomeric mutant, L251A, that binds Lac operator DNA as a dimer.
Dong F, Spott S, Zimmermann O, Kisters-Woike B, Muller-Hill B, Barker A., J. Mol. Biol. 290(3), 1999
PMID: 10395821
Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants.
Grant SG, Jessee J, Bloom FR, Hanahan D., Proc. Natl. Acad. Sci. U.S.A. 87(12), 1990
PMID: 2162051
Expression of Corynebacterium glutamicum glycolytic genes varies with carbon source and growth phase.
Han SO, Inui M, Yukawa H., Microbiology (Reading, Engl.) 153(Pt 7), 2007
PMID: 17600063
Reconstruction of microbial transcriptional regulatory networks.
Herrgard MJ, Covert MW, Palsson BO., Curr. Opin. Biotechnol. 15(1), 2004
PMID: 15102470
Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension.
Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR., Gene 77(1), 1989
PMID: 2744488
Analysis of a cis-active sequence mediating catabolite repression in gram-positive bacteria.
Hueck CJ, Hillen W, Saier MH Jr., Res. Microbiol. 145(7), 1994
PMID: 7855437
The PROSITE database.
Hulo N, Bairoch A, Bulliard V, Cerutti L, De Castro E, Langendijk-Genevaux PS, Pagni M, Sigrist CJ., Nucleic Acids Res. 34(Database issue), 2006
PMID: 16381852
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Genes encoding ribonucleoside hydrolase 1 and 2 from Corynebacterium ammoniagenes.
Kim HS, Lee JH, Lee WS, Bang WG., Microbiology (Reading, Engl.) 152(Pt 4), 2006
PMID: 16549679
Identification of a co-repressor binding site in catabolite control protein CcpA.
Kraus A, Kuster E, Wagner A, Hoffmann K, Hillen W., Mol. Microbiol. 30(5), 1998
PMID: 9988473
REPuter: the manifold applications of repeat analysis on a genomic scale.
Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R., Nucleic Acids Res. 29(22), 2001
PMID: 11713313
Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum.
Letek M, Valbuena N, Ramos A, Ordonez E, Gil JA, Mateos LM., J. Bacteriol. 188(2), 2006
PMID: 16385030
Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes.
Lulko AT, Buist G, Kok J, Kuipers OP., J. Mol. Microbiol. Biotechnol. 12(1-2), 2007
PMID: 17183215
Evolution of transcription factors and the gene regulatory network in Escherichia coli.
Madan Babu M, Teichmann SA., Nucleic Acids Res. 31(4), 2003
PMID: 12582243
The SUPERFAMILY database in 2004: additions and improvements.
Madera M, Vogel C, Kummerfeld SK, Chothia C, Gough J., Nucleic Acids Res. 32(Database issue), 2004
PMID: 14681402
Carbon catabolite repression in Lactobacillus pentosus: analysis of the ccpA region.
Mahr K, Hillen W, Titgemeyer F., Appl. Environ. Microbiol. 66(1), 2000
PMID: 10618236
Internal-sensing machinery directs the activity of the regulatory network in Escherichia coli.
Martinez-Antonio A, Janga SC, Salgado H, Collado-Vides J., Trends Microbiol. 14(1), 2005
PMID: 16311037

AUTHOR UNKNOWN, Biochemistry 38(), 1999
Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens.
Nishio Y, Nakamura Y, Kawarabayasi Y, Usuda Y, Kimura E, Sugimoto S, Matsui K, Yamagishi A, Kikuchi H, Ikeo K, Gojobori T., Genome Res. 13(7), 2003
PMID: 12840036
Corynebacterium glutamicum: a dissection of the PTS.
Parche S, Burkovski A, Sprenger GA, Weil B, Kramer R, Titgemeyer F., J. Mol. Microbiol. Biotechnol. 3(3), 2001
PMID: 11361073
Promoters of Corynebacterium glutamicum.
Patek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G., J. Biotechnol. 104(1-3), 2003
PMID: 12948648
A novel method for accurate operon predictions in all sequenced prokaryotes.
Price MN, Huang KH, Alm EJ, Arkin AP., Nucleic Acids Res. 33(3), 2005
PMID: 15701760
Modular analysis of the transcriptional regulatory network of E. coli.
Resendis-Antonio O, Freyre-Gonzalez JA, Menchaca-Mendez R, Gutierrez-Rios RM, Martinez-Antonio A, Avila-Sanchez C, Collado-Vides J., Trends Genet. 21(1), 2005
PMID: 15680508

AUTHOR UNKNOWN, MICROBES ENVIRON 20(), 2005
Purification, characterization, and crystallization of Escherichia coli ribokinase.
Sigrell JA, Cameron AD, Jones TA, Mowbray SL., Protein Sci. 6(11), 1997
PMID: 9385653
Corynebacterium glutamicum DNA is subjected to methylation-restriction in Escherichia coli.
Tauch A, Kirchner O, Wehmeier L, Kalinowski J, Puhler A., FEMS Microbiol. Lett. 123(3), 1994
PMID: 7988915
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668
Global control of sugar metabolism: a gram-positive solution.
Titgemeyer F, Hillen W., Antonie Van Leeuwenhoek 82(1-4), 2002
PMID: 12369205
A family of bacterial regulators homologous to Gal and Lac repressors.
Weickert MJ, Adhya S., J. Biol. Chem. 267(22), 1992
PMID: 1639817
Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis.
Weickert MJ, Chambliss GH., Proc. Natl. Acad. Sci. U.S.A. 87(16), 1990
PMID: 2117276
Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R.
Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertes AA, Inui M., Microbiology (Reading, Engl.) 153(Pt 4), 2007
PMID: 17379713
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18375800
PubMed | Europe PMC

Suchen in

Google Scholar