A machine vision system for automated non-invasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification
Wei N, Flaschel E, Friehs K, Nattkemper TW (2008)
BMC Bioinformatics 9(1): 449.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Einrichtung
Centrum für Biotechnologie > Institut für Biochemie und Biotechnik
Centrum für Biotechnologie > Arbeitsgruppe T. Nattkemper
Centrum für Biotechnologie > Institut für Bioinformatik
Technische Fakultät > AG Fermentationstechnik
Centrum für Biotechnologie > Arbeitsgruppe E. Flaschel
Center of Excellence - Cognitive Interaction Technology CITEC
Centrum für Biotechnologie > Arbeitsgruppe T. Nattkemper
Centrum für Biotechnologie > Institut für Bioinformatik
Technische Fakultät > AG Fermentationstechnik
Centrum für Biotechnologie > Arbeitsgruppe E. Flaschel
Center of Excellence - Cognitive Interaction Technology CITEC
Abstract / Bemerkung
Background: Cell viability is one of the basic properties indicating the physiological state of the cell, thus, it has long been one of the major considerations in biotechnological applications. Conventional methods for extracting information about cell viability usually need reagents to be applied on the targeted cells. These reagent-based techniques are reliable and versatile, however, some of them might be invasive and even toxic to the target cells. In support of automated noninvasive assessment of cell viability, a machine vision system has been developed. Results: This system is based on supervised learning technique. It learns from images of certain kinds of cell populations and trains some classifiers. These trained classifiers are then employed to evaluate the images of given cell populations obtained via dark field microscopy. Wavelet decomposition is performed on the cell images. Energy and entropy are computed for each wavelet subimage as features. A feature selection algorithm is implemented to achieve better performance. Correlation between the results from the machine vision system and commonly accepted gold standards becomes stronger if wavelet features are utilized. The best performance is achieved with a selected subset of wavelet features. Conclusion: The machine vision system based on dark field microscopy in conjugation with supervised machine learning and wavelet feature selection automates the cell viability assessment, and yields comparable results to commonly accepted methods. Wavelet features are found to be suitable to describe the discriminative properties of the live and dead cells in viability classification. According to the analysis, live cells exhibit morphologically more details and are intracellularly more organized than dead ones, which display more homogeneous and diffuse gray values throughout the cells. Feature selection increases the system's performance. The reason lies in the fact that feature selection plays a role of excluding redundant or misleading information that may be contained in the raw data, and leads to better results.
Erscheinungsjahr
2008
Zeitschriftentitel
BMC Bioinformatics
Band
9
Ausgabe
1
Seite(n)
449
ISSN
1471-2105
Page URI
https://pub.uni-bielefeld.de/record/1585611
Zitieren
Wei N, Flaschel E, Friehs K, Nattkemper TW. A machine vision system for automated non-invasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification. BMC Bioinformatics. 2008;9(1):449.
Wei, N., Flaschel, E., Friehs, K., & Nattkemper, T. W. (2008). A machine vision system for automated non-invasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification. BMC Bioinformatics, 9(1), 449. https://doi.org/10.1186/1471-2105-9-449
Wei, Ning, Flaschel, Erwin, Friehs, Karl, and Nattkemper, Tim Wilhelm. 2008. “A machine vision system for automated non-invasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification”. BMC Bioinformatics 9 (1): 449.
Wei, N., Flaschel, E., Friehs, K., and Nattkemper, T. W. (2008). A machine vision system for automated non-invasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification. BMC Bioinformatics 9, 449.
Wei, N., et al., 2008. A machine vision system for automated non-invasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification. BMC Bioinformatics, 9(1), p 449.
N. Wei, et al., “A machine vision system for automated non-invasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification”, BMC Bioinformatics, vol. 9, 2008, pp. 449.
Wei, N., Flaschel, E., Friehs, K., Nattkemper, T.W.: A machine vision system for automated non-invasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification. BMC Bioinformatics. 9, 449 (2008).
Wei, Ning, Flaschel, Erwin, Friehs, Karl, and Nattkemper, Tim Wilhelm. “A machine vision system for automated non-invasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification”. BMC Bioinformatics 9.1 (2008): 449.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:00Z
MD5 Prüfsumme
8d2df06693a24ef26ffb97ff0912700f
Daten bereitgestellt von European Bioinformatics Institute (EBI)
6 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Exploring an optimal wavelet-based filter for cryo-ET imaging.
Huang X, Li S, Gao S., Sci Rep 8(1), 2018
PMID: 29416100
Huang X, Li S, Gao S., Sci Rep 8(1), 2018
PMID: 29416100
Lifetime Distributions from Tracking Individual BC3H1 Cells Subjected to Yessotoxin.
Korsnes MS, Korsnes R., Front Bioeng Biotechnol 3(), 2015
PMID: 26557641
Korsnes MS, Korsnes R., Front Bioeng Biotechnol 3(), 2015
PMID: 26557641
Phenotypic signatures arising from unbalanced bacterial growth.
Tan C, Smith RP, Tsai MC, Schwartz R, You L., PLoS Comput Biol 10(8), 2014
PMID: 25101949
Tan C, Smith RP, Tsai MC, Schwartz R, You L., PLoS Comput Biol 10(8), 2014
PMID: 25101949
Label-free detection of neuronal differentiation in cell populations using high-throughput live-cell imaging of PC12 cells.
Weber S, Fernández-Cachón ML, Nascimento JM, Knauer S, Offermann B, Murphy RF, Boerries M, Busch H., PLoS One 8(2), 2013
PMID: 23451069
Weber S, Fernández-Cachón ML, Nascimento JM, Knauer S, Offermann B, Murphy RF, Boerries M, Busch H., PLoS One 8(2), 2013
PMID: 23451069
α-blockade, apoptosis, and prostate shrinkage: how are they related?
Chłosta P, Drewa T, Kaplan S., Cent European J Urol 66(2), 2013
PMID: 24579025
Chłosta P, Drewa T, Kaplan S., Cent European J Urol 66(2), 2013
PMID: 24579025
Machine vision for digital microfluidics.
Shin YJ, Lee JB., Rev Sci Instrum 81(1), 2010
PMID: 20113117
Shin YJ, Lee JB., Rev Sci Instrum 81(1), 2010
PMID: 20113117
28 References
Daten bereitgestellt von Europe PubMed Central.
The pathophysiology of mitochondrial cell death.
Green DR, Kroemer G., Science 305(5684), 2004
PMID: 15286356
Green DR, Kroemer G., Science 305(5684), 2004
PMID: 15286356
Cell metabolism in the regulation of programmed cell death.
Plas DR, Thompson CB., Trends Endocrinol. Metab. 13(2), 2002
PMID: 11854022
Plas DR, Thompson CB., Trends Endocrinol. Metab. 13(2), 2002
PMID: 11854022
Oxygen stress: a regulator of apoptosis in yeast.
Madeo F, Frohlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Frohlich KU., J. Cell Biol. 145(4), 1999
PMID: 10330404
Madeo F, Frohlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Frohlich KU., J. Cell Biol. 145(4), 1999
PMID: 10330404
Apoptosis, oncosis, and necrosis. An overview of cell death.
Majno G, Joris I., Am. J. Pathol. 146(1), 1995
PMID: 7856735
Majno G, Joris I., Am. J. Pathol. 146(1), 1995
PMID: 7856735
Measurement of Cell Viability in In Vitro Cultures
Castro-Concha LA, Escobedo RM, Miranda-Ham M., 2006
Castro-Concha LA, Escobedo RM, Miranda-Ham M., 2006
Viability measurements in mammalian cell systems.
Cook JA, Mitchell JB., Anal. Biochem. 179(1), 1989
PMID: 2667390
Cook JA, Mitchell JB., Anal. Biochem. 179(1), 1989
PMID: 2667390
Measurement of brewing yeast viability and vitality: a review of methods
Heggart H, Margaritis A, Stewart RJ, Pilkington M, Sobezak J, Russell I., 2000
Heggart H, Margaritis A, Stewart RJ, Pilkington M, Sobezak J, Russell I., 2000
In situ dark field microscopy for on-line monitoring of yeast cultures.
Wei N, You J, Friehs K, Flaschel E, Nattkemper TW., Biotechnol. Lett. 29(3), 2006
PMID: 17186133
Wei N, You J, Friehs K, Flaschel E, Nattkemper TW., Biotechnol. Lett. 29(3), 2006
PMID: 17186133
An in situ probe for on-line monitoring of cell density and viability on the basis of dark field microscopy in conjunction with image processing and supervised machine learning.
Wei N, You J, Friehs K, Flaschel E, Nattkemper TW., Biotechnol. Bioeng. 97(6), 2007
PMID: 17274069
Wei N, You J, Friehs K, Flaschel E, Nattkemper TW., Biotechnol. Bioeng. 97(6), 2007
PMID: 17274069
Real-time molecular and cellular analysis: the new frontier of drug discovery.
Taylor DL, Woo ES, Giuliano KA., Curr. Opin. Biotechnol. 12(1), 2001
PMID: 11167077
Taylor DL, Woo ES, Giuliano KA., Curr. Opin. Biotechnol. 12(1), 2001
PMID: 11167077
Detection of nuclei in 4D Nomarski DIC microscope images of early Caenorhabditis elegans embryos using local image entropy and object tracking.
Hamahashi S, Onami S, Kitano H., BMC Bioinformatics 6(), 2005
PMID: 15910690
Hamahashi S, Onami S, Kitano H., BMC Bioinformatics 6(), 2005
PMID: 15910690
Boosting accuracy of automated classification of fluorescence microscope images for location proteomics.
Huang K, Murphy RF., BMC Bioinformatics 5(), 2004
PMID: 15207009
Huang K, Murphy RF., BMC Bioinformatics 5(), 2004
PMID: 15207009
Human vs machine: evaluation of fluorescence micrographs.
Nattkemper TW, Twellmann T, Ritter H, Schubert W., Comput. Biol. Med. 33(1), 2003
PMID: 12485628
Nattkemper TW, Twellmann T, Ritter H, Schubert W., Comput. Biol. Med. 33(1), 2003
PMID: 12485628
Reagent-free automatic cell viability determination using neural networks based machine vision and dark-field microscopy in Saccharomyces cerevisiae.
Wei N, Flaschel E, Saalbach A, Twellmann T, Nattkemper TW., Conf Proc IEEE Eng Med Biol Soc 6(), 2005
PMID: 17281709
Wei N, Flaschel E, Saalbach A, Twellmann T, Nattkemper TW., Conf Proc IEEE Eng Med Biol Soc 6(), 2005
PMID: 17281709
Automatic detection of unstained viable cells in bright field images using a support vector machine with an improved training procedure.
Long X, Cleveland WL, Yao YL., Comput. Biol. Med. 36(4), 2006
PMID: 16488772
Long X, Cleveland WL, Yao YL., Comput. Biol. Med. 36(4), 2006
PMID: 16488772
Evaluation, Application, and Small Sample Performance
Jain A, Zongker D., 1997
Jain A, Zongker D., 1997
Feature selection toolbox
Somol P, Pudil P., 2002
Somol P, Pudil P., 2002
Support-vector networks
Cortes C, Vapnik V., 1995
Cortes C, Vapnik V., 1995
Haykin SS., 1999
Efficient Face Detection by a Cascaded Support Vector Machine Using Haar-Like Features
Rätsch M, Romdhani S, Vetter T., 2004
Rätsch M, Romdhani S, Vetter T., 2004
AUTHOR UNKNOWN, 0
A Comparison of texture feature extraction using adaptive gabor filtering, pyramidal and tree structured wavelet transforms
Pichler O, Teuner A, Hosticka BJ., 1996
Pichler O, Teuner A, Hosticka BJ., 1996
Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage.
Charnbolle A, DeVore RA, Lee NY, Lucier BJ., IEEE Trans Image Process 7(3), 1998
PMID: 18276252
Charnbolle A, DeVore RA, Lee NY, Lucier BJ., IEEE Trans Image Process 7(3), 1998
PMID: 18276252
Wavelet packet analysis for face recognition
Garcia C, Zikos G, Tziritas G., 2000
Garcia C, Zikos G, Tziritas G., 2000
Comparison of multiwavelet, wavelet, Haralick and shape features for microcalcification classification in mammograms
Soltanian-Zadeh H, Rafiee-Rad F, Pourabdollah-Nejad DS., 2004
Soltanian-Zadeh H, Rafiee-Rad F, Pourabdollah-Nejad DS., 2004
Floating search methods in feature selection
Pudil P, Novovièová J, Kittler J., 1994
Pudil P, Novovièová J, Kittler J., 1994
Comparison of algorithms that select features for pattern classifiers
Kudo M, Sklansky J., 2000
Kudo M, Sklansky J., 2000
AUTHOR UNKNOWN, 0
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 18939996
PubMed | Europe PMC
Suchen in