26 Publikationen
-
-
-
-
2023 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982760T. Adam, M. Ötting, and R. Michels, “State-switching decision trees”, Proceedings of the 37th International Workshop on Statistical Modelling. Part II, E. Bergherr, A. Groll, and A. Mayr, eds., Dortmund: TU Dortmund, 2023, pp.321-325.PUB
-
2022 | Blogbeitrag | Veröffentlicht | PUB-ID: 2982761T. Adam, “Hidden Markov models have pitfalls…”, Methods Blog: the Latest Methods in Ecology and Evolution, 2022.PUB | Download (ext.)
-
2022 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982759T. Adam, R. Glennie, and T. Michelot, “State-switching varying-coefficient stochastic differential equations”, Proceedings of the 36th International Workshop on Statistical Modelling. Part II, N. Torelli, R. Bellio, and V. Muggeo, eds., Edizioni Università di Trieste, 2022, pp.53-57.PUB
-
2022 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2961460R. Nathan, et al., “Big-data approaches lead to an increased understanding of the ecology of animal movement”, Science, vol. 375, 2022, : eabg1780.PUB | DOI | WoS | PubMed | Europe PMC
-
-
-
-
-
2021 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2982757R.J. Lennox, et al., “A role for lakes in revealing the nature of animal movement using high dimensional telemetry systems”, Movement Ecology, vol. 9, 2021, : 40.PUB | DOI | WoS | PubMed | Europe PMC
-
-
2021 | Wissenschaftliche Software | PUB-ID: 2982764L. Oelschläger, T. Adam, and R. Michels, fHMM: fitting hidden Markov models to financial data (R package), CRAN, 2021.PUB
-
2020 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982766T. Adam and L. Oelschläger, “Hidden Markov models for multi-scale time series: an application to stock market data”, Proceedings of the 35th International Workshop on Statistical Modelling. Part I, I. Irigoien, et al., eds., Bilbao: Universidad del País Vasco, 2020, pp.2-7.PUB
-
2020 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982763J.M. Pohle, et al., “Flexible estimation of the state dwell-time distribution in hidden semi-Markov models”, Proceedings of the 35th International Workshop on Statistical Modelling. Part I, I. Irigoien, et al., eds., Bilbao: Universidad del País Vasco, 2020, pp.189-193.PUB
-
-
2019 | Wissenschaftliche Software | PUB-ID: 2982765T. Adam, countHMM: penalized estimation of flexible hidden Markov models for time series of counts (R package), CRAN, 2019.PUB
-
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2941675T. Adam, R. Langrock, and C. Weiß, “Non-parametric inference in hidden Markov models for time series of counts”, Proceedings of the 34th International Workshop on Statistical Modelling, Volume I, 2019, pp.135-140.PUB
-
2019 | Konferenzbeitrag | PUB-ID: 2941674T. Adam, R. Langrock, and T. Kneib, “Model-based clustering of time series data: a flexible approach using non-parametric state-switching quantile regression models”, Proceedings of the 12th Scientific Meeting on Classification and Data Analysis, 2019, pp.19-22.PUB
-
-
-
2018 | Konferenzbeitrag | PUB-ID: 2933002T. Adam, et al., “Statistical boosting for Markov-switching distributional regression models”, Proceedings of the 33rd International Workshop on Statistical Modelling, Vol. 1, 2018, pp.30-35.PUB
-
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2916816R. Langrock, et al., “Spline-based nonparametric inference in general state-switching models”, Statistica Neerlandica, vol. 72, 2018, pp. 179-200.PUB | DOI | Download (ext.) | WoS
-
2017 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2911528V. Leos-Barajas, et al., “Multi-scale modeling of animal movement and general behavior data using hidden Markov models with hierarchical structures”, Journal of Agricultural, Biological and Environmental Statistics, vol. 22, 2017, pp. 232–248.PUB | DOI | WoS
-
2017 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2913894T. Adam, et al., “Using hierarchical hidden Markov models for joint inference at multiple temporal scales”, Proceedings of the 32nd International Workshop on Statistical Modelling, Vol. 2, Groningen, Netherlands 3-7 July, 2017, M. Grzegorczyk and G. Ceoldo, eds., Groningen: Univ. of Groningen, 2017.PUB