26 Publikationen
-
-
-
-
2023 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982760Adam, T., Ötting, M., & Michels, R., 2023. State-switching decision trees. In E. Bergherr, A. Groll, & A. Mayr, eds. Proceedings of the 37th International Workshop on Statistical Modelling. Part II. Dortmund: TU Dortmund, pp. 321-325.PUB
-
2022 | Blogbeitrag | Veröffentlicht | PUB-ID: 2982761Adam, T., 2022. Hidden Markov models have pitfalls…. Methods Blog: the Latest Methods in Ecology and Evolution.PUB | Download (ext.)
-
2022 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982759Adam, T., Glennie, R., & Michelot, T., 2022. State-switching varying-coefficient stochastic differential equations. In N. Torelli, R. Bellio, & V. Muggeo, eds. Proceedings of the 36th International Workshop on Statistical Modelling. Part II. Edizioni Università di Trieste, pp. 53-57.PUB
-
2022 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2961460Nathan, R., et al., 2022. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science, 375(6582): eabg1780.PUB | DOI | WoS | PubMed | Europe PMC
-
-
-
-
-
2021 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2982757Lennox, R.J., et al., 2021. A role for lakes in revealing the nature of animal movement using high dimensional telemetry systems. Movement Ecology, 9(1): 40.PUB | DOI | WoS | PubMed | Europe PMC
-
-
2021 | Wissenschaftliche Software | PUB-ID: 2982764Oelschläger, L., Adam, T., & Michels, R., 2021. fHMM: fitting hidden Markov models to financial data (R package), CRAN.PUB
-
2020 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982766Adam, T., & Oelschläger, L., 2020. Hidden Markov models for multi-scale time series: an application to stock market data. In I. Irigoien, et al., eds. Proceedings of the 35th International Workshop on Statistical Modelling. Part I. Bilbao: Universidad del País Vasco, pp. 2-7.PUB
-
2020 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982763Pohle, J.M., et al., 2020. Flexible estimation of the state dwell-time distribution in hidden semi-Markov models. In I. Irigoien, et al., eds. Proceedings of the 35th International Workshop on Statistical Modelling. Part I. Bilbao: Universidad del País Vasco, pp. 189-193.PUB
-
-
2019 | Wissenschaftliche Software | PUB-ID: 2982765Adam, T., 2019. countHMM: penalized estimation of flexible hidden Markov models for time series of counts (R package), CRAN.PUB
-
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2941675Adam, T., Langrock, R., & Weiß, C., 2019. Non-parametric inference in hidden Markov models for time series of counts. In Proceedings of the 34th International Workshop on Statistical Modelling, Volume I. pp. 135-140.PUB
-
2019 | Konferenzbeitrag | PUB-ID: 2941674Adam, T., Langrock, R., & Kneib, T., 2019. Model-based clustering of time series data: a flexible approach using non-parametric state-switching quantile regression models. In Proceedings of the 12th Scientific Meeting on Classification and Data Analysis. pp. 19-22.PUB
-
-
-
2018 | Konferenzbeitrag | PUB-ID: 2933002Adam, T., et al., 2018. Statistical boosting for Markov-switching distributional regression models. In Proceedings of the 33rd International Workshop on Statistical Modelling, Vol. 1. pp. 30-35.PUB
-
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2916816Langrock, R., et al., 2018. Spline-based nonparametric inference in general state-switching models. Statistica Neerlandica, 72(3), p 179-200.PUB | DOI | Download (ext.) | WoS
-
2017 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2911528Leos-Barajas, V., et al., 2017. Multi-scale modeling of animal movement and general behavior data using hidden Markov models with hierarchical structures. Journal of Agricultural, Biological and Environmental Statistics, 22(3), p 232–248.PUB | DOI | WoS
-
2017 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2913894Adam, T., et al., 2017. Using hierarchical hidden Markov models for joint inference at multiple temporal scales. In M. Grzegorczyk & G. Ceoldo, eds. Proceedings of the 32nd International Workshop on Statistical Modelling, Vol. 2, Groningen, Netherlands 3-7 July, 2017. Groningen: Univ. of Groningen.PUB